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FOREWORD

One of the basic problems in the study of elementary particle physics is that of des-
cribing the states of a system consisting of several particles with spin. This report re-
presents an attempt to present a coherent and comprehensive view of the various spin for-
malisms employed in the study of the elementary particles. Particular emphasis is given
to the description of resonances decaying into two, three or more particles and the methods
of determining the spin and parity of resonances with sequential decay modes.

Relativistic spin formalisms are based on the study of the inhomogeneous Lorentz group
called the Poincaré group. This report, however, is not a systematic study of this group.
It is our opinion that most of the features of the spin formalisms may be understood on a
more clementary and intuitive level. Certainly, a deeper understanding of the subject is
possible only from a careful study of the Poincaré group. Suffice it to say that the group
possesses two invariants corresponding to the mass and the spin of a particle and that all
possible states of a free particle with arbitrary mass and spin form the set of basis vec-
tors for an irreducible representation of the group.

Our approach here is to start with the particle states at rest, which are the eigen-
vectors corresponding to the standard representation of angular momentum, and then 'boost"
the eigenvectors to obtain states for relativistic particles with arbitrary momentum. If
the boost operator corresponds to a pure Lorentz transformation, we obtain the canonical
basis of state vectors which, in this report, we call the canonical states for brevity.

On the other hand, a certain boost operator corresponding to a mixture of a pure Lorentz
transformation and a rotation defines the helicity state vectors whose quantization axis
is taken along the direction of the momentum. Of course, this approach precludes discus-
sion of massless particles on the same footing. We may point out, however, that states of
a massless particle can best be treated in the helicity basis, with the proviso that the
helicity quantum mumber be restricted to positive or negative values of the spin. In this
report, we deal exclusively with the problem of describing the hadronic states.

In Sections 1 to 4, we develop concurrently the canonical and helicity states for one-
and two-particle systems. In Section 5 we discuss the partial-wave expansion of the scat-
tering amplitude for two-body reactions and describe in detail the decay of a resonance
into two particles with arbitrary spin. The treatment of a system consisting of three
particles is given in the helicity basis in Section 6.

Section 7 is devoted to a study of the spin-parity analysis of two-step decay proces-
ses, in which each step proceeds via a pion emission. We give a formalism treating both
baryon and boson resonances on an equal footing, and illustrate the method with a few
simple but, in practice, important examples. In developing the formalism, we have endeav-
oured to make a judicious choice of notation, in order to bring out the basic principles
as simply as pessible.

In the last two sectioms, Sections 8 and 9, we discuss the tensor formalism for arbi-
trary spin, the relativistic version of which is known as the Rarita-Schwinger formalism.

In the case of integral spin, the starting point is the polarization vectors or the spin-1
wave functions embedded in four-momentum space. The boost operators in this case correspond
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to the familiar four-vector representation of the Lorentz transformations. In the case of
half-integral spin, we start with four-component Dirac formalism for spin-} states; the
boost operators here correspond to the 4 x 4 non-unitary representation of the homogeneous
Lorentz group. We derive explicit expressions for the wave functions for a few lower spin
values and exhibit the form of the corresponding spin projection operators. Particular
emphasis is given, through a series of examples, to elucidating the connection between the
formalism of Rarita and Schwinger and that of the non-relativistic spin tensors developed by
Zemach, as well as the relationship between these and the helicity formalism of Section 4,

It is in the spirit "Best equipped is he who can wield all tools available" that we
have attempted to present here a coherent and unified study of the spin formalisms that are
frequently employed in the study of resonant states. This report, however, is not an ex-
haustive treatise on the subject; rather, it represents an elementary, but reasonably
self-contained account of the basic underlying principles and simple applications. We give
below a list of general references, either as a supplementary material for the subjects
treated briefly in this report, or as a source of alternative approaches to the methods
developed here.

On the subject of angular momentum and related topics such as the Clebsch-Gordan co-
efficients and the Wigner D-functions, the reader is referred to Messiaht), Rosez), and
Edmondss). A thorough account of the irreducible unitary representation of the Poincaré
group is given in Wérle“) and in Halperns); a more concise exposition of the subject may
be found in Gasiorowiczs), Wick7), Froissart and Omnéss), and Moussa and Storag). For a
good treatment of the resonance decays covered in Sections 5 to 7, the reader is referred
to Jacksonlo). Pilkuhnll) gives a brief accoumt of the spin tensors discussed in
Sections 8 and 9. A systematic study of the relativistic spin states in a direction not
covered in this report has been made by Wéinberglz) who has used the finite dimensional
non-unitary representation of the homogeneous Lorentz group in his description of the
states of arbitrary spin. Some of the notations we have used are, however, those of
Weinberg. We have not attempted to give a complete list of references on the subject of
spin formalisms; the reader is referred to Jackson'®) for a more extensive list of
references. See also Trippla) for a comprehensive survey on the methods of spin-parity
analysis which have been applied to the study of resonant states.

The author is indebted to Drs. M. Jacob and P. Auvil for several enlightening dis-
cussions and to Drs. S. Reucroft and V. Chaloupka for careful reading of the draft. The
author wishes to thank Dr. L. Montanet for his encouragement and support and the Track
Chambers Division of CERN for its warm hospitality.
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ONE-PARTICLE STATES AT REST

States of a single particle at rest (mass w > 0} may be denoted by |jmy, where j is
the spin and m the z-component of the spin. The states |jm) are the canonical basis vectors
by which the angular momentum operators are represented in the standard way. The procedure
for representing the angular momentum operators is a familiar onme from non-relativistic

)

quantum mechanics’’. We merely list here the main properties for later reference. Since
the angular momentum operators are the infinitesimal genmerators of the rotation operator,
the spin of a particle characterizes how the particle at rest transforms under spatial ro-

tations,

Let us denote the three components of the angular momentum operator by Jx’ Jy’
(or Jy, J2, and J3). They are Hermitian operators satisfying the following commutation

and Jz

relations:

[J0 93] = 1 exjx i s (1.1)
where i, j, and k run from 1 to 3. The operators J; act on the canonical basis vectors
ljm) as follows:

I jmy = 3(5 + D] jm)
J|my = m|jm) (1.2)

Slmy =[Gem) Gem= ) meD,

where J* = Ji + J; + J; and J, = J, ¢ in. The states |jm) are normalized in the standard
way and satisfy the completeness relation:

(ym'|jm) = 855 Suin
(1.3)
2 lgmy Gmf =1,
m
where I denotes the identity operator.

A finite rotation of a physical system (with respect to fixed coordinate axes) may be
denoted by R(a,B,y), where {(a,B,y) are the standard Euler angles. To each R, there corres-
ponds a unitary operator U[R], which acts on the states |jm), and preserves the multiplica-

tion law:
U[Rle:l = U[R2] U[RJ .
Now the unitary operator representing a rotation R{w,B,Y) may be written
UlR(8,Y)] = e ¥z 7y &7 (1.4)

corresponding to the rotation of a physical system {active rotation!) by y around the
z-axis, B around the y-axis, and finally by o around the z-axis, with respect to a fixed
(x,v,z) coordinate system. Then the rotation of a state |jmy is given by

U[R(e,8,Y) ]| jm) = lem') D) (e Y) s (1.5)
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where DrJn‘m is the standard rotation matrix as given by Rosez} :

Di‘m[R] = Dri'm[a’B’YJ = <jm‘|U[R[a!G;Y]]ljm>
(1.6)

— e—im'a d%‘m[BJ g im¥

dialB) = Gm'| €Y [ 5m) . (1.7)

In Appendix A some useful formulae involving Dgl,m and drjn 1y, dre listed.

RELATIVISTIC ONE-PARTICLE STATES

Relativistic one-particle states with momentum p may be obtained by applying on the
states |jm) a unitary operator which represents a Lo;entz transformation that takes a
particle at rest to a particle of momentum p- There are two distinct ways of doing this,
leading to canonical and helicity descriptions of relativistic free particle states.

Let us first consider an arbitrary four-momentum p" defined by
' = (05030517 = (Epypyep,) = (Ep) . (2.1)

With the metric tensor given by

B [1_1 O]
= Euw T — 2.2
g gu o l—l (2.2)

we can also define a four-momentum with lower indices:
Py =g P =(B-p) . (2.3)
The proper homogeneous orthochronous Lorentz transformation takes the four-momentum
p" into p'™ as follows:

p" =AY, (2.4)
where 1'\”\J is the Lorentz transformation matrix defined by

B _
Bag Aauﬁv = Buv
(2.5)
det A = 1, Ay 0.

The Lorentz transformation given by A”\} includes, in general, rotations as well as the pure
Lorentz transformations. Let us denote by Lu\)(g) a pure time-like Lorentz transformation,
where B is the velocity of the transformation. Of particular importance is the pure lorentz
transf;mation along the z-axis, denoted by LZ(B):

cosha 0 0 sinha
0 1 0 0
= 2.6
LZ[B] 0 0 1 0 (2.6)
sinha 0 0 cosha

where 8 = tanh a.
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In terms of Lz(B)’ it is easy to define a pure Lorentz transformation along an arbi-
trary direction 8-
L(g) = R(6:60) L,(8) R (4:50) (2.7

where R($,0,0) is the rotation which takes the z-axis into the direction of B with spherical
angles (6,¢):
= R(¢,8,0) 2 . (2.8)

The relation (2.7) is an obvious one, but the reader can easily check for a special case
with ¢ =
cos 8 0 siné

10
R{4,6,0) = , Ry = 0 1 0 (2.9)
0 R;;
-sin6 0 cos®

Now the action of an arbitrary Lorentz transformation A on relativistic particle
states may be represented by a unitary operator U[A]. The operator preserves the multi-
plication law, called the group property:

U[AZAJ = U[Azj U[AJ . (2.10}

Let us denote by L(p) the '"boost™ which takes a particle with mass w > 0 from rest to
momentum p and the corresponding unitary operator acting on the particle states by U[L(p)]

uip)] = e P X, (2.11)

where tanh o = p/E, sinh o = p/w, and cosh « = E/w.

In analogy to Eq. (1.4), a boost operator defines a Hermitian vector operator K, and
the components K; are then the infinitesimal generators of "boosts". The three components
K together with J form the six infinitesimal generators of the homogeneous Lorentz group,
and they satisfy def1n1te commutation relations among them. We do not list the relations
here, for they are not needed for our purposes. The interested reader is referred to
Werle“).

From the relation (2.7) and the group property (2.10), one obtains
u[1(p)] = U[R(5,6,0)] U[L(p)] U [R(»,0,0)] (2.12)
where the rotation R takes the z-axis into the direction of P with spherical angles (8,¢):
= R(4,8,0) 2 . (2.13)

We are now ready to define the "'standard" or canonical state describing a single par-
ticle with spin j and momentum p:

|p, im) = |6, 0,p, jm) = U[L(p}]] m>

i} (2.14)
o[ &(6,8,0)] U[L(p)] U [R(¢»8,0)]1jm)
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where |jm} is the particle state at rest as defined in the previous section. We emphasize

that the z-component of spin m is measured in the rest frame of the particle and not in the
frame where the particle has momentum p.

The advantage of the canonical state as defined in Eq. (2.14) is that the state
transforms formally under rotation in the same way as the '"rest-state" | 3m)y:

U[RR] u[L(p)] U [RR]U[R]|jm) (2.15)

u[r]lp, jm)
= D) (R)[Rp, jm ,

where one has used Eq. (1.5). It is clear from the relation (2.15) that one may take over
all the non-relativistic spin formalisms and apply them to situations involving relativistic
particles with spin. One ought to remember, however, that the z-component of spin is de-
fined only in the particle rest frame obtained from the frame where the particle has momen-
tum p via the pure Lorentz transformation L“(E) as given in Eq. (2.7) [see Fig. la].

{a) N {b) q\

Fig. 1 The orientation of the coordinate system (x',y',z') associated with a particle at
rest in the (a) canonical, and (b) helieity deseription.

Next, we shall define the helicity state describing a single particle with spin j and
momentum p:

lE,jk) |¢,9,p,j1) = U[L(E)] U[§[¢,8,0]]|jl)

(2.16)

It

u(R{¢»8,0) U[L{p)]| ) .

Helicity states may be defined in two different ways. One may first rotate the rest state
|3A) by ﬁ, so that the quantization axis is along the p direction and then boost the system
along p to obtain the helicity state |p,jr}. Or, equi;alently, one may first boost the
rest state |jA} along the z-axis and tﬂen rotate the system to obtain the state lg,jl).
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That these two different definitions of helicity state are equivalent is obvious from the
relation (2.12).

One sees that, by definition, the helicity quantum mmber A is the component of the
spin along the momentum p, and as such it is a rotationally invariant quantity, simply
because the quantizationwaxis itself rotates with the system under rotation. This fact
may be seen easily from the definition (2.16):

ulR]lp, 7 = U[RR] (L]0
(2.17)
= | Rp, j)) .

In addition, the helicity A remains invariant under pure Lorentz transformations along p,
as long as the direction of p 1s not reversed. Let L' be the Lorentz transformation that
takes p into p', which is parallel to p. Then, the invariance of A under L’ may be seen

by

o] uL(p) ] u{R]I 50

u[L(p)] ulR]I3n) (2.18)

uiL Jip,

lps M) -

There is a simple connection between the canonical and helicity descriptions. From
the definitions (2.14) and (2.16), one finds easily that

lp, 3 = U[R]J u[L] uTTR] W[R]150)

, (2.19)
= Dp(R][ps jm» -
We shall adopt here the following normalizations for the one-particle states:
(p 3 mlp m =3(p' — p) 655 S
(2.20)
(p J Nip v = Sp - p) 851 S s
where §(p' - p) is the Lorentz invariant §-function given by
et { ;
5(p - p) = () (2E) $)(p - p). (2.21)

It can be shown that, with the invariant normalization of Bq. (2.20), an arbitrary Lorentz
transformation operator U[A] acting on the states |p,im) or |p,jAy is indeed a unitary op-
erator, 1.e. U'U = I. With the invariant volume element as defined by

5 &p 2.22
dp = e (2.22)
(2r) (2E)
the completeness relations may be written as follows:
]Zm:flgjm) dp(p jm| = I
(2.23)

Zlflgjk) dpp il =T,
J
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PARITY AND TIME-REVERSAL OPERATIONS

Classically, the action of parity and time-reversal operations, denoted ? and T, may
be expressed as follows:

(3.1)

where x, p, and J stand for the coordinate, momentum, and angular momentum, respectively.
It is seen from Eq. (3.1) that # and T commute with rotations, i.e.

[»,R] =0, [t,R]=0. (3.2)

From Eq. (3.1}, one sees also that the pure Lorentz transformations (in particular, boosts)
act under # and T according to

?PL(p) = L(-p)?, tllp) = L{ -p}r . (3.3)

Let us now define operators acting on the physical states, representing the parity
and time-reversal operations:

=
I

u#]
0[] ,

where Il is a unitary operator and T is an anti-unitary (or anti-linear unitary) operator').

(3.4)

T

T is represented by an anti-unitary operator due to the fact that the time-reversal opera-
tion transforms an initial state into a final state and vice versa. Operators I, T, U[R],
and U[L(E)] acting on the physical states should obey the same relations as Eqs. (3.2) and
(3.3):

[n, U[R]] =0, [T, U[R]] =0 (3.5)

mu{i(p)] = u[L{ -p)In
(3.6)
tulp)] = ulL(-p)Ir .

We are now ready to express the actions of T and T on the rest states |jm). From
the relation (3.5), it is clear that the quantum mumbers j and m do not change under II:

m|jm)y = n|jm) , (3.7

where n is the intrinsic parity of the particle represented by |jm). Let us write the

action of T as follows:

T|jm) = Igfm|jm‘) .
The relation (3.5) implies that, remembering the anti-unitarity of T,

- -
Z Tym Dim’ [R] = Z D]zm [R]Tkm' .
k k
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From Egs. (A.8) and (A.9), one sees that the above relation may be satisfied, if Totm is
given by
Tom = d:ﬂ‘m(“) = [_]J_m 6m,’—m 4

so that the action of T on the states |jm) may be expressed as
T)jmy = (=" ]5-m) . (3.8)

Using the definition (2.14) and Eq. (3.6), one can show that the canonical state with
momentum p transforms under I and T as follows:

m|p, jm) = n| - p, jm)
(3.9)
H|¢,8,p,jm) = n|ﬂ-+ ¢, 1 — 8, py jm}
and

Tlp jmy = (7" -ps j - m)
- (3.10)
|80 jmy = (= "In + o m—8,p, j—m) .

Next, we wish to express the consequences of Il and T operations on the helicity states
|p,jA). The simplest way to achieve this is to use the formula (2.19), which connects the
helicity and canonical states. Then, by using Eqs. (3.9), (3.10), and (A.12), one obtains
easily

o8, py 7Y =ne Pl + 6,7 -8 py -2 (3.11)
and

T|o8, ps 0 = € | + ¢, -8 py A) & (3.12)
Now the helicity A is an eigenvalue of J - $. According to expressions (3.1), J- p+-J+p

under p and J *p~J + punder 1. This explains why the helicity A changes sign under T,

while it remains invariant under T.

Finally, we wish to elaborate on the meaning of the negative momentum in the state
|-p,jm) in Egs. (3.9) or (3.10). By definition,

|- ps jm) = U[L[—g]]ljm . (3.13)

Note the following obvious identity [see Eq. 2.773:

L[— R] ﬁ L-—z[p) ﬁ

s (3.14)

i}
=
—

P
o

o
=

where L_Z(p) denotes a boost along the negative z-axis, R = R(%,9,0) and R = R(m+¢,7-0,07.
From Eqs. (3.13) and (3.14), we obtain the result

I_Esjm) zlﬂ R TSIl P o Jm) D (3.15)
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On the other hand, one does not have the relation like (3.15) for helicity states. Let us
wWrite

|-p, ) = U[R] UlL_(p}]|0) . (3.16)

From Eq. (3.14), we see that

o

R L—z[pJ * ELz[p)
so that

|=p» > + VR] U[Lp) ]l 0) = + 6,7 =8, j0) (3.17)

The reason for this is that, while canonical states have been obtained using operators cor-
responding to pure Lorentz transformations, the helicity states are defined with operators
representing a mixture of rotation and pure Lorentz transformation. The phase factors
appearing in Eqs. (3.11) and (3.12) may be viewed as a consequence of the inequality (3.17).

TWO-PART ICLE STATES

A system consisting of two particles with arbitrary spins may be constructed in two
different ways; one using the canonical basis vectors |p,jm), and the other using the
helicity basis vectors |p,ji). We shall construct in this section both the canonical and
helicity states for a twg-particle system having definite spin and z-component, and then
derive the recoupling coefficient which connects the two bases. Afterwards, we investigate
the transformation properties of the two-particle states under T and T, as well as the con-
sequences of the symmetrization required when the two particles are identical.

4.1 Construction of two-particle states

Consider a system of two particles 1 and 2 with spins s; and s, and masses wy and wp.
In the two-particle rest frame, let p be the momentum of the particle 1, with its direction
given by the spherical angles (e,¢).~ We define the two-particle state in the canonical
basis by

foomm;) = a{u[L{p)J|sim)) U[L(-p)]|s,m,)} , (4.1)

where |simi) is the rest-state of particle i and a is the normalization constant to be de-
termined later. L(*p) is the boost given by [see Eq. (3.14)]

L+p) = R(6,6,0) L..{p) R7(4,6,0) , (4.2)
where §(¢,8,0) is again the rotation which carries the z-axis into the direction of p and
L+z(p) is the boost along the #z-axis.

Owing to the rotational property (2.15) of canonical one-particle states, one may de-
fine a state of total spin s hy

|¢8smgy = z: (s,m, s,m, |sm,)|¢omm,) , (4.3)

Ty

where (slmlszmz{sms) is the usual Clebsch-Gordan coefficient. Using the formula (A.14),
one may easily show that, if R is a rotation which takes @ = (6,p) into R’ = Rq,
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ulr]lasng = ). Dy (R)|R sm) (4.4)

so that the total spin s is a rotational invariant.

The state of a fixed orbital angular momentum is constructed from Eq. (4.3) in the
usual way:

| 2msmg) :f do Yi(e)]| @ smg) (4.5)

where d0 = d¢ d cos 6. Let us investigate the rotational property of Eq. (4.5). Using
Eq. (4.4},

U[R]|emsmg) = f do Yi(2) D,ﬁS:mS(R)lR' smy) (4.6)
where R’ = R'(a',B",y'") = R2, d2 = du’ d cos B’ and, from Egs. (A.13) and (A.3),
(@) =/ 224:1 Dig(R'R')

= JEIL Y 05 (10 Di(R) (4.7)

4
mf

= Dp(R) Yalgy o)

one obtains the result

U[R]|emsmg) = ) Dh(R) D5 (R)[2m'sme) 4.8)

n'mg

This shows that the states Utmsms) transform under rotation as a product of two "rest

states" |fm) and |sm5).

Now, it is easy to construct a state of total angular momentum J:

jomzs) = Z (emsmg| TM)|2m smy)

mig

= Z [D,msms|JM]|[slm1 52m2|sm5] ® (4.9

miMg
mymy
xf dQ Yﬁ,(ﬂ]'ﬂ mm,) .«
From Eqs. (4.8) and (A.14), one sees immediately

U[R]|IMes) = Dypy(R)|IMes) (4.10)

Note that, as expected, & and s are rotational invariants: Eq. (4.9) is the equivalent
of the non-relativistic L-S coupling.
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Next, we turn to the problem of constructing two-particle states from the helicity
basis vectors |p,jA). In analogy to Eq. (4.1), we write

Joonn) = aulE} ol o) ls vt p)llsa) |
= U[ﬁ(‘b:e’ O)]lﬂm‘i)\z) » (4.11)
where |sili) is the rest state of particle i and a the normalization constant of Eq. (4.1).

We have constructed the helicity state for the particle 2 in such a way that its helicity
quantum number is +X,.

States of definite angular momentum J may be constructed from Eq. (4.11) as follows:
NJ '/' J*
|aMAR) = 2= | dR D (R) U[R][ooAD,) (4.12)

where N; is a normalization constant to be determined later. Let us apply an arbitrary
rotation R’ on the state (4.12):

i NJ J* m
uR] = 5 f dR Dy, (R) U[R"Jjoorp,)
where R” = R'R. But, by using Eq. (A.3) and the unitarity of the D-functions,

BER) = Dl )

I

E A * n
Y. Dine(R) D, (R")
L

2. DielR) D (RY)
v
Using this relation, as well as the fact that dR = dR”, one obtains the result
. T o] g
U[RT = |3 = ) DR IM,) (4.13)
"

so that states (4.12) are indeed states of a definite angular momentum J. Note that, as
expected, A; and X, are rotational invariants.

Now, let us specify the rotation R appearing in Eq. (4.12) by writing R = R(¢,9,Y).
Then,

U[R($,8,Y)]]00A 2,

U[R(¢,0,0)] U[R(0,0,¥) JJoox 2, (4.14)
= ¢ Y gl R(g,6,0) JJ00A,) .
The last relation follows because of the commutation relation

[R(0,0,Y), L,(p)] =0 . (4.15)
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Substituting Eq. (4.14) into Eq. (4.12), and integrating over dy, one obtains
*
[aMan,) = Ny f an Dy (6,8,0)| 66300 (4.16)

where A = k1 - Az.
4.2 Normalizations
We shall now specify the normalizations we adopt for states (4.1) and (4.11). The

most convenient choices are

6[2}[QI - Q] 6m1m1‘ ‘szmz' 4.17)

i

(Q'mim;|2mm, )

‘and

@) = 8o - 0) 5,0 6, (4.18)

With the single particle normalizations as defined in Eqs. (2.20), one may show (see

Appendix C) that
1 p
8= Vi o (4-19)

where p is the relative momentum and w is the effective mass of the two-particle system.
The normalization (4.17) implies that the states |JMs) given in Eq. (4.9) obey the follow-

ing normalizatioms:

(IME's |IMES) = 81y Gyn Spe’ Sss’ o (4.20)

From Eqs. (4.18) and (A.4),the state |IMipx;) of formula (4.16) is seen to be normalized

according to

(MR IMAN) =655 g S Sua) s 4.21)

if the constant NJ is set equal to

N, = — - (4.22)
The completeness relations may now be written
Y |aMis) (Imis| = 1 (4.23)
IM
is
and
Yy (g, =T (4.24)
JM
BALF)
From Eqs. (4.16) and (4.18), we obtain the relation
*
(MM JIMAN,) = Ny Dy (60,0 6300 Si - (4.25)
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4.3 Connection between canonical and helicity states

We start from formula (4.11):

Joorn> = aulf) {olL o) lsin) o[z e)]ls, - 1)

il

a {u[L[E)] UR]|s) U[i(=p)] W& ]s, - w} 4.26)

Z D]Snllkl((p: 6, 0] DISI'IZZ—A2[¢’ 8, 0],¢emlm2) ,

mym;
where we have used the formulae (2.12), (1.5), and (4.1). Then, from Eq. {4.16),

[IMAR,) = N, Z f s Di(¢,8,0) Dyl (8,6,0) DpZ 3, (,8,0)| s€mym,) . (4.27)

mymp

The product of three D-functions appearing in Eq. (4.27) may be reduced as follows. From
Eq. (A.14),

Dillll Dfnzz_xz = Z (sim 55, ] smg) (s, —2y|s)) D;SA (4.28)
Sing
and, from Eq. {A.15),
* 4 20+1
Dy Do = ). ﬁ% [m] (amsmg|aM) (20sA[aA] YE . (4.29)
£m

Substituting these into Eq. (4.27} and comparing the result with Eq. (4.9), we obtain
finally

1
|JM>\112> = Z {;j i 11]2 (203 2) (s, s, - No|sh)james), (4.30)
25

so that the recoupling coefficient between canonical and helicity states is given by

22+1
27+1

1
(IMLs|IMAD,) = [ T (20| IN) (5,2, 5, X, s0) 6,0 Sy’ (4.31)

The relation (4.30) may be inverted to give

[aas)y = 37 [IMA,) (IMA,| Jhizs)

. (4.32)
241
- ;ﬂz @J - 1] (2050 J1) (57 5, = M| sA) [aMrh,)
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4.4 Symmetry relations

The canonical states |JMes) transform in a particularly simple manner under symmetry
operations (e.g. parity and time-reversal), and the derivation is also much simpler than
for helicity states. For this reason, we shall first investigate the consequences of
symmetry operations on the canonical states, and then obtain the corresponding relations
for the states |JMipA;) by using the relation (4.30}.

We shall first start with the parity operation. Using the formula (3.9), we find
easily

H|¢8m1m2) = n]n2|1r + ¢y m — 8, mm,) , (4.33)

where my (nz) is the intrinsic parity of particle 1(2). From the defining equation (4.9),
we then obtain immediately

njamesy = nyny(=)|omMes)y , (4.34)
so that the "f-s coupled" states are in an eigenstate of I with the eigenvalue nlnz(-}ﬁ, a

well known resuit. Using the formula (4.30) and the symmetry relations of Clebsch-Gordan
coefficients, one finds for the helicity states

IR TV IE R £ M) VI VD VS VO R (4.35)

Again, the helicities reverse sign, as was the case for the single-particle states [see
Eq. (3.11)].

Consequences of the time-reversal operation may be explored in a similar fashion.
Using Eq. (3.10), one finds lmmediately

T|¢omm,) = (=)™ [—]Sz_mzh + ¢y T— 8, —I;—M,} . (4.36)

Then, from Eq. (4.9},
Tlamesy = (=)0 - mes) (4.37)

and, from Eq. (4.30},
TlaMaagy = F) I M . (4.38)

Now, we investigate the effects of symmetrization required when the particles 1 and 2
are identical. Regardless of whether the particles are boscns or fermions, the symmetrized
state may be written, for the canonical states

T|ames)y = [1 + ()% p, Jlonies) {4.39)

where P,, is the particle-exchange operator. Again, using the defining equation (4.9), one
obtains
P, |omes) = ()17 omMes)

or

|omes), = [1+ (=7 Jlomes) (4.40)
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so that & + s = even for a system of identical particles in an eigenstate of orbital angular
momentum £ and total spin s. Now, the symmetrized helicity state may be written

[Ty =1+ (=)= p, ]| ) o (4.41)
From Eqs. (4.30) and (4.40), one finds
[IMAA,Ys =] TAA,Y + (=) [a) (4.42)

Note that, for a system of identical particles, the symmetrized states in both canonical
and helicity bases have the same forms, regardless of whether the particles involved are
fermions or besons.

APPLICATIONS

We are now ready to apply results of the previous section to a few physical problems
of practical importance. As a first application, we shall write down the invariant transi-
tion amplitude for two-body reactions and derive the partial-wave expansion formula. We
do this in the helicity basis, following the derivation given in the "classic' paper by
Jaccb and Wicklkj. Our main purpose in this exercise is to show how the particular normali-
zation (2.20) of single-particle states influences the precise definition of the invariant
amplitudes and the corresponding cross-section formula (see Appendix B).

Next, we shall discuss the general two-body decays of resonances and give the symmetry
relations satisfied by the decay amplitude, as well as the coupling formula which comnects
the helicity decay amplitude to the partial-wave amplitudes. Finally, we take up the dis-
cussion of the spin density matrices, introduce the multipole parameters, and then expand
the angular distribution for two-body decays in terms of the rultipole parameters.

5.1 S-matrix for two-body reactions

Let us denote a two-body reaction by
athb-+c+d {(5.1)

with Pas Sgs A, and n, standing for the momentum, spin, helicity, and the intrinsic parity

a!
of the particle a, etc. Let w, denote the centre-of-mass (c.m.) energy and let pi(pf) be
the c.m. momentum of the particle a(c). The invariant S-matrix element for the reaction

(5.1) may be written, in the over-all c.m. system,
(pcres paralSlparas M) = (peres = ehalSlpdes ~pide)

Wo y (5.2)
= [47) == (480000 ,

(47 o (aaardsloor,iy

where we have used Eq. (4.11) with the ncrmalization constant as given in Eq. (4.19), and
we have fixed the direction of P; at the spherical angles (0,0) and P at &y = (84,90)-
Because of the invariant normalization {2.20) of the one-particle states, the absolute
square of the amplitude (5.2) summed over the helicities Aa’ Ab’ etc., is a Lorentz in-
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variant quantity. It is in this sense that formula (5.2} is referred to as the "invariant
S-matrix™. Due to the energy-momentum conservation, one may write

(QoreralS]008,2) = (20 8" (p, + py — = py) * (Rehcra|S(wo)|00A 1LY . (5.3)

If we define the T operator via S = 1 + iT, it is clear that we may write down the
T-matrix in the same way as in formulae (5.2) and (5.3}, simply replacing S by T. Now, the
invariant transition amplitude Mes is defined from the T-matrix by

(20)" 8* (b, + pg = b, ~ By} My = {PAs Paral TIDahas Prie) (5.4)
or,
W
me; = (4n) \/?;1 (Qereral Twg) | 00A ) (5.5)

The differential cross-section for fixed helicities is related to the transition amplitude
by
P

do B me |
doy i

(5.0)
Brwg

which has been obtained using Egs. (B.2), (B.3), and (B.6).

Let us now expand the transition amplitude in terms of the partial-wave amplitudes:

(h g 1w }00R A = ) {8k g [IMAAG) (IMAAG| 1) THARLY X (TRA A J00R ) (5.7)
JM

1
= 4_17 Z (2'-] + l) O‘c)‘dlrle{wo]l)‘a)\b) D)\J:’[%seulo] ’
J

= - ‘: -
where X )‘a }‘b and )\C }‘d‘

1€ we define the "scattering amplitude'" f(2;) via

— = £{a,)|? (5.8)
e EO0]
we obtain [pf /pj]%
f[Qo] = —W— e (5.9)
0

This formuila then relates the "non-relativistic' scattering amplitude {0} to the Lorentz
invariant transition amplitude mfi' From Egs. (5.5) and (5.7), one sees immediately that

Ha) = 5= 2 0+ 5 s ) ) Do 0 0) - (5.10)
J

i

The partial-wave T-matrix appearing in Eq. (5.10) is related to the partial-wave S-matrix
by

(era| S Wyl rad) = Sei i, 6,\,dxb+i()\c>\d|TJ[Wu]I)‘akb) » (5.11)

where 6fi = 1 for elastic scattering and zero, otherwise.
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If parity is conserved in the process (5.1), it follows from Eq. (4.35)} that the
partial-wave amplitude given by Eq. (5.11) should satisfy the following symmetry relation:
e 2l Wl ahe) = nOAlS A (5.12)

where
_ N Mg [_)Sc“d*sa*sb
Na Nk )

Next, we examine the consequences of time-reversal invariance. Let us denote by
(1) and |£) the initial and final system in a scattering process. Then, the time-reversed
process takes the initial state [tf) into the final state |ri}, so that time-reversal in-
variance implies the following relation for the S-matrix:

(£]s]i) = (rils|uf) (5.13)

Using Eq. (4.38), one finds immediately
Ochal S wedlrared = Gadgls () Ada) (5.14)

where the right-hand side refers to the process ¢ + d + a + b.
5.2 Two-body decays

Let us consider a resonance of spin-parity J" and mass w {to be called the resonance
J}, decaying into a two-particle system with particles 1 and 2:

J>1+2, (5.15)

and let s;(sz) and ni{n.) denote the spin and intrinsic parity of the particle 1(2). In
the rest frame of the resonance J(JRF)}, let p be the momentum of the particle 1 with the
spherical angles given by @ = (8,4). Then, Ehe amplitude A describing the decay of spin J
with the z-component M into two particles with helicities x; and A, may be written

A= (pr; -phlmia

i

1
A [%]2 (QOM A, | TMAR,) (I, ] IM)

I

. J* _
N, bﬂxz Diga (¢ 8,0), A=Ay, (5.16)

where one has used the formulae (4.19), (4.24}, and (4.25). The "helicity decay amplitude"
F is given by

Nl

B, = an (5] o, lml )y (5.17)

Since M is a rotational invariant, the helicity amplitude F can depend only on the rota-

tionally invariant quantities, namely, J, A, and X,.
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It is easy to expand the helicity decay amplitude F in terms of the partial-wave
amplitudes. Using the recoupling coefficient (4.31), we may write

(I ]I = ) (IMAp, | MRs) (Imes|m|am)
£3

1
- MT [0sM |JJ0) (7,8, - h|sh) (IMes|m|m)
; [ZJ +1 e

so that F may be expressed

1
NJFL, = 0 (28 1) aguosi| ) (shus, =2 l)) (5.18)
2s

where the partial-wave amplitude a,_ is defined by
w2
ag. = Va1 [5] (IMes|m|amy . (5.19)

If parity is conserved in the decay, we have, from Eq. (4.35},
FLAlllz = nn]nz(_)J_Sl_sz FL_IA],AZ » (5-20)

where n; and n, are the intrinsic parities of the particles 1 and 2. If the particles 1
and 2 are identical, we have to replace the state [JMi;X;) in Eq. (5.17) by the symmetrized
state of Eq. (4.42), so that we obtain the following symmetry relation:

P, = () By, (5.21)

It is possible to obtain a further symmetry relation on F by considering the time-
reversal operations. For the purpose, let us consider the elastic scattering of particles
1 and 2 in the angular momentum state |[JMi;kxz), i.e.

@M)W M) = o [T W) A, (5.22)
where w is the c.m. energy and coincides with the effective mass of the resonance J. Now,

we make the assumption that the Jth partial wave for the elastic scattering of particles 1
and 2 is completely dominated by the resonance at the c.m. energy w (see Fig. 2).

L/
VRN

Fig. 2 Elastic scattering of particles 1 and 2, mediated by a resonance J in the s-channel.
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Then, we may write

(W) ~ ) m|amy D{w) (M|,
M

where D(w) is the Breit-Wigner function for the resonance and m is the "decay operator" of
Eq. (5.17). Substituting this into Eq. (5.22), we obtain

+ [ B . 8 *
{x ?\erJ[w]P\])\z) ~ Dw) I‘iilé [“3{])\2 )

so that time-reversal invariance for elastic scattering implies, from Eqs. (5.11} and (5.14),

g J*¥ J*
Fi By, = P, By {5.23)

This means that the phase of the complex amplitude F does not depend on the helicities A,
and X;. Therefore, we can consider F a real quantity without loss of generality:

Fiy, = real . (5.24)

We emphasize that this result follows only from the assumption that the Jth partial
wave is dominated by the resonance J at the energy w. This condition is fulfilled, for
example, in the P-wave amplitudes of the ' or pn+ elastic scattering at the c.m. energies
corresponding to p® and N*(1236) masses, where 1t is known that these resonances saturate
the unitarity limit. It is clear, however, that this condition may not be satisfied for all
resonances. In this sense, the relations (5.23) or (5.24) may be considered only an "approxi-
mate" symmetry. We will show later in the discussion of the sequential decay modes that the
symmetry (5.23) can actually be tested experimentally.

Before we proceed to a discussion of the angular distribution resulting from the decay
of a resonance of spin J, it is necessary to construct the corresponding spin density matrix,
which carries the information on how the resonance has actually been produced.

5.3 Density matrix and angular distribution

Let us consider the production and decay of a resonance J given by
at+tb-ct+J J-14+2. (5.25)

We shall use for this process the same notations, wherever possible, as those of Sections
5.1 and 5.2. Note, however, that the helicity corresponding to the resonance J is denoted
by A, and w is the effective mass of the particles 1 and 2. The over-all transition ampli-
tude Mg may be written, combining Egs. (5.5) and (5.16),

M ~ ) (pho|mbIn) (percalTiwg)|prahy) (5.26)
iy

The differential cross-section in the JRF decay angles @ = (8,¢) may be expressed, after
summing over all other variables except @,

d ) .
“&g“ - f ds, dw Kw) ) e[ (5.27)
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where K(w) is a factor which includes all the quantities dependent on w, such as the phase
space factor [see Eq. (B.8)]) and the square of the Breit-Wigner function D(w) of the reso-

nance J.

Next, we introduce the spin density matrix corresponding to the resonance J:
R o *
pi!\’ - j’dQD Z <gf)\c‘q I[WO]lEi)\a)‘b) X <Bf>‘<:A I [(wongila)‘b) ’ (5‘28)

where the summation sign denotes the sum over A, Xb’ and Ao Then, from expressions
{5.26) and (5.27},

do
= fdw K(w) Z Lpa, [ TRY o7 Inlmtprag) (5.29)
i

One sometimes defines the density matrix by

ol = ) I el ] (5.30)
AN

Then,

d
F;— ~fdw K(w) Z (prp me’mpap,y .
Mg

At this point, we introduce a simplifying assumption that piA, is independent of w
over the width of the resonance J. This assumption makes the resulting formalism much
simpler. It can be shown that a more general formalism without this simplifying assumption
leads to identical results in most cases [see Chungls)]. We shall come back to this point
later, when we discuss the sequential decay modes.

Now, we can absorb the integration over dw into the decay amplitude F, and define
J J
Bray j.dw K[w]|FhAJ2 . (5.31}

We emphasize that F is in general a complicated function of w. If the partial-wave ampli-
tude is proportional to pg, we see from Eq. (5.18) that F is a function of w in a way that
makes it impossible to ''split off" a helicity-independent function of w from F.

Combining expressions (5.16), (5.29), and (5.31), we obtain the explicit expression
for the differential cross-section (A = A1 - Ag)
d ‘ * .
j&_;‘ ~ Nj Z D;J\;\' Dy (:8,0) Dy(0,8,0) 8){92 . (5.32)
Ty

Let us denote by I{7) the normalized angular distribution, i.e.
f e 1(q) =1 . (5.33)

Then, we may write

27+ 1 * ‘
I(Q]i[ An } Z p}]\:\’ Dﬂ)\[d”e!o] D}]\n)\[rp,B,O] 8;1)\2 . (5.34)
he
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I(®) is a normalized distribution, if we impose:

Y o =1 (5.35)
i
and
J
Y g, =1 (5.36)
XA,

Note that I(Q) is real, as it should be. This can be shown easily by using the fact that
the density matrix is Hermitian by definition [see Eq. (5.28)].

Next, we turn to a discussion of the symmetry relations for piA, coming from parity
conservation in the production process. We fix the production coordinate system such that
the reaction a + b » ¢ + J takes place in the x-z plane. Consequences of parity conserva-
tion may now be investigated using the reflection operator through the y-axis:

y=Le "y, (5.37)

It is clear that this operator commutes with any operator representing a rotation around
the y-axis:

[m ulr,]] =0 (5.38)
In addition, it will commute with any operator representing a boost in the x-z plane:

[Hy’ U[L(is)]:l =0, (5.39)

where the momentum k lies in the x-z plane.

It is now easy to see that the II, acting on the T-matrix in Eq. (5.28) will leave the
momenta pe and p; unchanged and act directly on the rest states:

Hylsixi) = rh[‘]siikilsi =X, (5.40)

where the index i stands for the particles a, b, ¢, or J. Substituting Eq. (5.40) into
Eq. {5.28), one obtains the result

'

o = ()" oty (5.41)

Note that, owing to the relation {5.39), the density matrix defined in the canonical basis
instead of the helicity basis will satisfy the same symmetry relation as in Eq. (5.41). In
fact, expression (5.38) implies that the symmetry given in Eq. (5.41)} is true as long as
the quantization axis remains in the production plane.

We shall derive another symmetry relation applicable to the density matrix defined in
the canonical basis. The canonical density matrix is, of course, obtained by replacing Ay
in Eq. (5.28) by m, the z-component of the spin s; in the canonical description. Suppose
now that the production process a + b + ¢ + J takes place in the x-y plane. It is convenient,
in this case, to define a reflection operator through the z-axis:

—inJz

I, =Te . (5.42)

Note that, in analogy to expression (5.39),
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(1, lug1] =0, (5.43)

where the momentum q lies in the x-y plane.

Therefore, the Hz acting on the T-matrix in Eq. (5.28) leaves the momenta Ps and P;
in peace, while the I, acting on the rest states lsimi) brings out a phase factor
—imj

I,|sm) = nj e "|sim;) . (5.44)

Now, the resulting symmetry relation can be written down easily:

¢

ot = "™ B (5.45)

where m is the z-component of spin J in the canonical basis. The relation (5.45) implies
that p%m, = ¢ if m-m’ is odd; this symmetry is known as Capps' checker-board theoren '

We are now ready to examine the implications of parity conservation in the angular dis-
tribution given by Eq. (5.34). For the purpese, we choose the Jackson frame for the reso-
nance J, i.e. the z-axis along the direction Py and the y-axis along the production normal
in the JRE. Applying the symmetry (5.41) and the formula {A.12') for the D-functions to
the angular distribution (5.34), we obtain

i(6,6) = n—8,m~9) . {5.46)

This is then the general symmetry relation applicable if the quantization axis is in the pro-
duction plane, regardless of whether the parity is conserved in the decay process.

Integrating over the angle ¢, the angular distribution is seen to satisfy:
I;1(8) = I;(m-8). So, if the distribution I;(8) is a polynomial in cos 6, only the terms
with even powers of cos 6 contribute. If we integrate over the angle 6, Eq. (5.46) implies
the symmetry: I,(¢) = I (m-¢). Note that I,(¢) is simply the distribution in the Treiman-
Yang angle in the Jackson frame. So, parity conservation in the production process means
that the Treiman-Yang angle is symmetric around ¢ = m/2. Then, choosing the interval of ¢
between -m/2 and 3n/2, we may fold the distribution in ¢ about n/2 and consider only the
interval between -m/2 and +7u/2.

If parity is conserved in the decay of the resonance J, we have the additional symmetry,
owing to the relations (5.20) ‘and (A.12),

9,4) = —0, 1 +¢) . (5.47)

Note that this symmetry is valid, independent of the choice of the quantization axis in the
JRE, simply because Eq. (5.47) has been obtained without the use of the symmetry relations
of the density matrix. Note also that, if the particles 1 and 2 are identical, we obtain

exactly the same symmetry (5.47).

Integrating Eq. (5.47) over the angle 8, we obtain the symmetry: I5(8) = Talm + ¢).
This means that the distribution in ¢ should be symmetric around ¢ = 0, so that the Treiman-
Yang angle distribution in the interval between -7/2 and +m/2 may be folded again around
¢ = 0 to give a distribution between 0 and m/2. Therefore, if parity is conserved both in
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the production and decay, one may fold the Treiman-Yang angle distribution twice in an
appropriate way, and consider only the interval between 0 and /2, without loss of generality.
5.4 Multipole parameters

Our next task is to define the multipole parameters and expand the angular distribution

in these parameters. We shall first define the spherical tensor operators:

Tow = ) |98 (JnLM|a)
A

. (5.48)

Using the formula (A.15), we see immediately that under rotations these operators transform
according to

u[R] Ty U'[R] - z: Diya(R) Tpyy - (5.49)
M

Now, we define the multipole parameter tiM for the resonance J as the expectation
value of the tensor operators TLM’ i.e.
J J
tiw = tr {o” Toub (5.50)

where pJ is the density matrix as defined in Eq. (5.30). From Eq. (5.48), we see immediately

that
*
the = ) o (INLM[IA) (5.51)
A’
or, by inverting this,
L +1) g,
Day = Z (Z_—J - 1] t]u(JA LM]JA) . (5.52)
LM

Then, the density matrix, as defined in Eq. (5.30), may be expressed as

ZL l. *

J J*

= E — |t i s 5.53
o} L [2] l] LM LM ( )

J*
50 that tLM

From the normalization (5.35), we see that the multipole parameters are normalized so

is simply the coefficient in the expansion of pJ in terms of TLM'

that tgo = 1, while the hermiticity of the density matrix implies

*

tiy = el . (5.54)

Note also that tiM =0 if L > 2J, as is clear from Eq. (5.51). If the z-axis of the JRE

lies in the production plane, we have from Eq. (5.41),
thy = ()"t Ly, (5.55)

or, by combining with Eq. (5.54),

the = () tly - (5.56)
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On the other hand, if the z-axis of the JRF is along the production normal, we obtain from
Eq. {5.45),
t{y =0, for odd M. (5.57)

let us remark at this point that the tiM's may not in general assume arbitrary values
but are constrained to a certain physical domain resulting from the positivity of the density
matrix and the Eberhard-Good theorem, where applicable. The reader is referred to Jackson'®)
and Byersls) for simple expressions for the lower and upper bounds of tﬂM; for more elabo-
rate considerations, see Ademollo, Gatto and Preparata'’), and Minnaert'®).

Next, we introduce what we shall call the 'moments'; they are the experimental
averages of the D-functions:

H(LM) = (Dyo(4,8,0))
:fdn 1(2) Dh(4,6,0) . {5.58)

Note that H(00} = 1 from Bq. (5.33). Using Egs. (5.34), (5.51), and (A.16), we find that
the moments H(IM) may be expressed as

HLM) =ty £, (5.59)
where
ff = 2: giAZLJRLUIJA], A=A =Ry (5.60)

Mg

and fg =1 from Eq. (5.36). So the moment H(LM) is in general given by a product of two
J*

terms; the first temm tLM_contains the information on how the resonance J is produced,

while the second term fi carries the information on the decay of the resonance.

If parity is conserved in the decay, it follows from Eq. (5.20) and the symmetry of
the Clebsch-Gordan coefficients that fﬂ satisfies the symmetry

£l =0, forodd L, (5.61)

Note that the same symmetry holds if the two decay products are identical. It is now a
simple matter to find the symmetry relations of H(IM); it enjoys all the symmetries that

C e J
are satisfied by both,tLM and fi.

The angular distribution has a simple expansion in terms of the moments:

o) =), [ZLA‘WF 1] H(LM) Diy(4,6,0) , (5.62)

LM

where the sum on L extends from 0 to 2J. Again, owing to the symmetry (5.54), the angular
distribution I(R) is real. For parity-conserving decays, L takes on only the even values
in the sum.
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THREE-PARTICLE SYSTEMS

A system consisting of three particles may be treated most elegantly in the helicity
basis, as was done by Berman and Jacobls) [for an alternative approach, see Wickzo)]. In
this section, we shall first construct a three-particle system in a definite angular momen-
tum state and then apply the formalism to a case of a resonance decaying into three particles.
We will give the decay angular distribution in terms of the spin density matrix and discuss
the implications of parity conservation. Finally, we will show that in a Palitz plot analysis
different spin-parity states of the three-particle system do not interfere with one another.

Consider a system of three particles 1, 2, and 3. Let us use the notations S50 Ny»
Ai’ and Wy for the spin, intrinsic parity, helicity, and mass of the particle i. In the
rest frame (r.f.) of the three particles, the momentum and energy of the particle i will be
denoted by P and Ei' In the r.f., we define the "standard orientation" of the three-
particle system, as shown in Fig. 3. This coordinate system is then the '"body-fixed" co-
ordinate system, which may be rotated by the Euler angles o, 8, and Y to obtain a system

with arbitrary orientation.

1

P3

~

Fig. 3 Standard orientation of the three-particle rest system. Note that the y-axis is
defined along the negative direction of p;, and the z~axis along p) X p2.

A system with the standard orientation can be written
3
ICOO, Ei)'i) = b H ’Risi)\i) , (6.1]
i=1

where b is a nmormalization constant and the helicity basis vectors for each individual par-
ticle are given in the usual way [see Eq. (2.16)]:

|Ei5111> = U[R; L,(p;) ]|sry) (6.2)

with
R; = R[¢;, 772, 0] . (6.3)

A three-particle system with an arbitrary orientation in the r.f. can now be obtained by
applying a rotation R(2,B,y) to the state (6.1):

|aBY, ;) = ULR(a,8,7)]|000, EX;) 6.4)
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If we impose the normalization of the above states via
('B'Y, Epri|aBY, Eh) = &R - R) 8, - &) 4(E, ~ E,) "H W (6.5)
H

we obtain easily {see Appendix C) that the normalization constant b should be chosen as
follows:

b = 8n*Var . (6.6)

Let us now define a state of definite angular momentum:
Ny I*
lJMLl, E‘iki) = ‘/:‘Z_? de DMU[C" B,Y]lC!BY, E’i?\i) N (6.7]

where Ny is the normalization constant as given in Eq. (4.22). That this state represents
a state of definite angular momentum is easy to show following steps identical to those

which led to the relation (4.13). Therefore, states (6.7) transform under a rotation R’
according to

U[R )M Epg = ). Diew(R)|IM 1 E) (6.8)
5

This relation also shows that, in addition to the obvious invariants E. and Ay the
quantity p is also a retational invariant.

The physical meaning of u may be investigated as follows. Let n be a unit vector
parallel to the body-fixed z-axis, which coincides with the direction p) x p. in the stan-
dard orientation. Now, the integration over dy in Eq. (6.7) involves:

de e e R 000, BNy ) .

We see that this integration has the effect of picking out from the state IOOO,EiAi) an
eigenstate of J + n with the eigenvalue p. Then the subsequent rotation by R{a8y) [see
Eq. (6.4)) mak;s u~the eigenvalue of J » n with n along the body-fixed z-axis. It now be-
comes obvious why u is rotationally invariant; it is the z-component of angular momentum
whose quantization axis itself rotates under a rotation of the system.

Let us examine the transformation property of the state (6.7) under parity operations.
Since the parity commutes with rotations, we may apply the parity operator 1 on the state
(6.1):

11000, EsA,)

il

b [T 8|Ros by 520
1

1

-insij—=
b II me O |Rppp s A
i

i

{H n e"”si} u[R(%,0,0) 000, E; — 2p) (6.9)
where, from Eq. (3.11},

§i = R['FT + ¢i’ “/2: 0) = R(TTSO-'O) Ri
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so that
nagy, EQ) = {H nie‘i“si} ULR(e, 8, Y + 7) ]fo00, 15 — ;) . {6.10)
i

Using this relation in Eq. (6.7) and changing the integration over y into one over

¥' =y + 7, we obtain finally

]Sl+52 FS3+U

I JIMy, Ergy = nynyny(~ M, Ly = Ay) (6.11)
We note that this formula is not the same as that given in Berman and Jacob'®). The reason

for this is that their definition of one-particle helicity states involves a rotation
R(#,6,-¢), instead of our convention R(¢,8,0) [see Eq. (2.16)].

In order to treat the case when two of the three particles are identical, we shall
work out a transformation formula for exchanging the particles 1 and 2. The exchange

operator Py, applied to the state (6.4) is equivalent to performing a rotation by m around
the body-fixed y-axis [see Fig. 3]:

P ey, Ba, Toh Bdg) = |1+ 0, 7 =8, 1 =¥, L Edp 1AL (6.12)

where one has used the formula (A.10). Combining this formula with formula (6.7) and using
Eq. (A.11),

Poa [IMI, 1, E,h Thy) = (S LM =y b £, Ty (6.13)

Again, this formula is not the same as that given in Berman and Jacoblg). This arises be-
cause their standard orientation for the three-particle system has been defined differently
from our convention; their coordinate system has been set up with the negative x-axis
along the momentum Ps-

From Eqs. (6.5) and (6.7}, we find that our angular momentum States are normalized
according to

(IMWEN [ IMUEN)Y = 855 8 50 8B~ 1) &(E, - B,) x H Saal - (6.14)

1

The completeness relation is given by

Y| oy dny B, (OMER | = T (6.15)

JM
UAG

From Egs. (6.5} and (6.7), we obtain the matrix element

N . .
(aBY, BN [ IMy, Brp) = ﬁ;’ D ety oty — 1) ok, — ) x [] 4,0 (6.16)

i

We are now ready to discuss the process in which a resonance J with spin-parity Jn
and mass w decays into three particles 1, 2, and 3. In the rest frame of the rescnance
(JRF), let the angles («,B,y) describe the orientation of the three-particle system. Then,
the decay amplitude may be written
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A = (aBY, Epr|m[Im)
= (aBY, B | IMUE ) (IMur); [mfam)

= % F(EN) Dg{:(aBY] (6.17)

-

after using formulae (6.15) and (6.16). If the '"decay operator" m is rotationally invariant,
tue decay amplitude F should depend only on the rotational invariants, i.e.

FIER,) = (IMutgmla (6.18)
If parity is conserved in the decay, we have the symmetry from Eq. (6.11):
FL) = nnmym{—)7 72 Fa(Ey — Ay) . (6.19)
And, if particles 1 and 2 are identical,
F(Ey By Ehy) = ¢ (1", B BN, (6.20)

where the plus sign holds for two identical bosons and the minus sign for fermions.

Let us assume that the resonance J is produced in the following process:
a+brc+J, J1+2+3. (6.21)

In analogy to the two-body decays, we introduce the density matrix for the resonance J, and
assumie as before that it is independent of w, the resonance mass. From Eq. (6.17), we may

write the differential cross-sections as

do 2J +1 *
dRdwdE, dE = [ 8_”2 ] Z D.f\j‘iM‘ Di]u[RJ Dif‘.n[RJ x K[W] Z F"j Fi* » (6'22)
L MM’ Y

W
where R = R(o,8,Y) is the rotation specifying the orientation of the three-particle system
in the JRF, and K(w) is the kinematic factor which contains, among others, the phase space
factors [see formula (B.11)].

If we integrate over dy, dE;, dE», and dw, we obtain the angular distribution in
G = (8,0) describing the direction of the normal to the decay plane:

20+ 1 x
(o) = [ ] Z ome 7, Din(9:8:0) Dy (6, 0) g (6.23)

47
MM u

where

g =j’ dw dF;, dil, K(w) ).

Ay

o P
MUY I (6.24)

. . . . J _ J _
Note that I(%) is properly normalized, if we require that Zyoue = 1 and Eugu = 1.
1f the z-axis in the JRF is fixed to be in the production plane, we obtain the sym-

metry, following the same argument as that for the two-body decays,

1(6,6) = 1{n — &7 — ¢ . {6.25)
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This is identical to formula (5.46). So, in the Jackson frame, the distribution in the
Treiman-Yang angle may be folded around /2, and one may consider only the interval between
-1/2 and +n/2Z.

The distribution I(2) for three-particle decays is different in one important aspect
from that for two-body decays: the parity conservation in the decay process does not in
general lead to any additional symmetry in I(R), as g remains invariant under parity [see

. (6.19) and (6.24)]. One important exception occurs in the case of the decay w + 3m,
The parity conservation implies from Eq. (6.19) that gil = 0 with only one non-zero com-
ponent g5, so that the resulting angular distribution is identical to a two~bedy decay,
i.e. p» 27 [compare expressions (5.34) and (6.23)]. In this case, then, we have the
additional symmetry given by Eq. (5.47).

It is possible to obtain an additional symmetry, if the particles 1 and 2 are identi-
cal. From formulae (6.20) and (6.24), we see that g {u in this case. Then, using ex-
pressions (6.23) and (A.12), we get

16,¢) = L{n — 8,7 + ¢) (6.26)

identical to Eq. (5.47) for two-body decays. Following the same argument in Section 5.3,
we conclude that the Treiman-Yang angle distribution can be confined to the interval between
0 and +n/2.

The angular distribution of Eq. (6.23) may be expanded in terms of the moments H(LM)
in the same way as in Section 5.4. The relations (5.58), (5.59), and (5.62) remain the
same, and the fi of Eq. (5.60) is now given by

=) g2(Ju 10]ay) . (6.27)

u

If the particles 1 and 2 are identical, fi = 0 for odd L, as was the case for the two-body

decays.

As a final item to be discussed in this section, we shall show that, in a Dalitz plot
analysis, two different spin-parity states do not interfere with each other. Suppose that
in a reaction two resonances are produced with spins J; and Ja, each of which in turn de-
cays into a common set of three particles. The over-all amplitude may be written

- Jaro-
S Z [I[MJ Dill]L( ] + Z DM SU; ] Fuz{hi)‘i] ' (6.28)

Myuy Mons

where T.(M) is the production amplitude. If J, # J,, the Dalitz plot distribution is given

by
do ?
dwdL,dE, L t L

Mlulli Mguzj\i

2
T,(M,) F? (6.29)

1) F

after integrating over dR. This shows that, if one integrates over the orientation of the
three-particle system, states of two different spins do not interfere due to the orthogo-
nality of the D-functions.
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Suppose now that the spins are the same but the parities of the two rescnances are
opposite. Again, integrating over dR, one obtains
_d9 . Y ) FL M) Al {6.30)
dwdEdE, . ’ S

My

where F indicates a decay amplitude of opposite parity to that of F. Applying the symmetry
{6.19) from parity conservation, one may rewrite expression (6.30) with a minus sign in
front of the second term, which means that the interference term is identically zero, again
obtaining the result (6.29). In conclusion, we may state that, as long as one integrates
over the orientation of the three-particle system and sums over the helicities of the final
particles, states of different spin-parity do not interfere with one another in a Dalitz-
plot analysis.

SEQUENTIAL DECAYS

1f a resonance decays in two steps, each consisting of a two-body decay, then the
moments obtained from the joint decay distribution provide a powerful means of determining
the spin and parity of the parent resonance. In this section we shall develop a general
formalism for the sequential decay, J + s * 0, s +s; + 0, where the spins J, s, and s,
are arbitrary, and illustrate the formalism with a few simple but, in practice, important
examples, namely, Z(1385) ~ A + 7, A(1950) + A(1236) + m, B{1235) » w + w, and
nA(1640) + 7 + £(1260).

It is possible to use for the spin-parity analysis two-particle states constructed
from the canonical basis vectors, as was done by Ademollo and Gatt021) and Ademollo, Gatto
and Preparatazz). We shall adopt, however, the helicity formalism in this section, for it
not only involves simpler algebra but also brings out certain salient features in the
problem, not quite transparent within the canonical formalism. The helicity formalism was
first used by Byers and Fensterza), who treated the case of a resonance decaying into a
A+ m system with A >+ p + 7. Their method has been successfully employedzg) to determine
the spin and parity of 2(1530) and I(1385). Button-Shafer?5) later has extended the method
to treat a fermion resonance decaying into a spin-7, baryon and a pion, and Chungls) has
applied the technique to treat a boson resonance decaying into two intermediate bosons with

26}

have used a formalism very similar to that of Chung in their spin-parity analysis of the

spin, each of which in turn decays into two or three spinless particles. Ascoli et al.

B(1235) meson. Berman and Jacob27) have also given a similar formalism treating both the
fermion and boson resondnces. Donohueza], on the other hand, treats the problem of anal-

ysing a boson resonance decaying into a fermion and an anti-fermion (see also Ref. 22).

Let us suppose that a resonance of unknown spin-parity JV with mass w is produced and
decays via the following chain of processes:

a+tbrctJ
Jrstm (7.1)

s 51‘¥ Ty oy
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where m, or m; stands for pion and J, s, and sy designate the parent, intermediate, and
final particles, as well as their spin. Let Mg A, and LA (N1, A1, and w;) denote the
parity, helicity and mass of the particle s {s;). In the rest frame of J {s), denoted by
JRF (SRF), let PS {p1) and Q@ (9;) be the magnitude and direction of the s (s1) momentum
measured in the helicity coordinate system as shown in Fig. 1b.

Although the SRF should always be described by the helicity coordinate system, which
is related to the JRF as illustrated in Fig. 1b, the coordinate axes specifying the JRF
need not be those of the helicity system with respect to the production coordinate axes;
the JRF can just as well be described by the Jackson coordinate system, or the one with
the z-axis along the production normal (see Section 5.3). For concreteness, however, we
shall use the helicity coordinate system for the JRF, and use the symbol A for the helicity
of the resonance J, bearing in mind that we are at liberty to choose any coordinate system
we wish for the JRF.

The over-all invariant amplitude for the process (7.1) may be written
Mey ~ (sh[mg|sh) (asalm,|an) (peret|T(we) [piaare) » (7.2)

where the first and the second factor describe the s and J decay, respectively, and the
third factor is the production amplitude for the J with helicity A. This production ampli-
tude is identical to that given in (5.26).

As in Section 5.3, we make the simplifying assumption that the J production amplitude
is independent of w. Then, the spin density matrix for the J as given in Eq. (5.28) is a
constant and can safely be normalized according to Eq. (5.35). The decay amplitudes in
Eq. (7.2) are given, according to Eq. (5.16), by

(asi[m, |38y = X, B D(s,,0) (7.3)

w
(lel)\llms,s)\) = Ng Ffl Dii\l(‘bpspo] s (7.4)

where 0 = (8,¢) and @, = (8,,¢1). In analogy to Eq. (5.31), we shall introduce the follow-
ing symbols to describe the bilinear products of the helicity amplitudes:

*
2y =I dw dw, K{w,w,) F} F}, (7.5)

and

2
A 7.6)
where K(w,ws) includes all the functions of w or Wo, such as the squares of Breit-Wigner
functions for the particles J and s and the phase-space factors [see Eq. (B.10)].

We emphasize that any dependence on W in the helicity amplitude F has been factored
out and absorbed into K(w,w }, so that gJL can be considered constant. As pointed out in
Section 5.3, this is not in general p0551b1e However, with the exampies we consider here,
this is an excellent approximation: if the intermediate resonance s is A(1115), the heli-
city amplitude Fil is clearly a constant, owing to the narrow width of the #; if the s is
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A{1236), Fil may be assumed to be proportional to p,, owing to the p-wave nature of the
decay, and the p} factor may then be absorbed into K(w,w.).

Now, we are ready to write down the joint angular distribution in & and f1:

2J+1)[2s+1 * *
) = () (B T oy o o » ) ol @) 0t ) . 0
47 dn vy ] 1 1

Ay

where we have used the shorthand notation:

Dﬁm[n] = Djm(‘bleio] - (7.8)

We shall adopt the following normalizations for the g's:

g =1 (7.9)
A
Z g, =1 (7.10)
Ay

so that the joint angular distribution is normalized according to
j‘dsz do, (o) =1 (7.11)

with the trace of pJ equal to 1 as given in Eq. (5.35).

Let us now introduce the joint 'moments', which are the experimental averages of the
product of two D-functions:

H(zm LM) = <D§,m[n] Dﬁo[m)) (7.12)
with the normalization,
H{0000) =1 . (7.13)
Then the moments are given by
H(2m LM) = f do do, 1(o, o) Dy (2) DE (o) . (7.14)

Using Eqs. (7.7) and (A.16), we find that the H's may be expressed as:

Hgm LN) = oy B30 £5 (7.15)
where ti; is the multipole parameter as given in Eqs. (5.51), and the f's are related to
the g's by

£1n = ) (03 Ln]dr) (52 2m]s)) (7.16)
ey
and
£ = 7. 2 (sh,80]sn) (7.17)
1

with the normalizations given by

£l =f=1. (7.18)
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The form of the f's is such that Eq. (7.17) may be considered a special case of Eq. (7.16),
- 0 _
b 10 - o).

The expression (7.15) displays neatly how the moments H depend on the resonances J and
s. The H's are in general a product of three factors; the first one carries the informa-

tion on how the resonance J has been produced, while the second (third) one contains the
information on the decay of the resonance J (rescnance s).

Let us turn to a discussion of the symmetry relations satisfied by the f's. For this
purpose, we first recall that parity conservation in the decay implies, according to
Eq. (5.20),

Ff = EZF{A, £ = rwk[—JJ_5+l (7.19)
and
B = esFl, ey = ngn(-F70 (7.20)
50 that we have the conditions
gfx' =E gln‘ = Eg}]—)ﬁ = gq—;\—:\’ . (7.21a)

Also, if time-reversal invariance is applicable, we should have [see Eq. {5.24)],
gfr = real (7.21b)
where the symbol = reminds us that this symmetry may not hold in all cases. From Fg. (7.20),

gil = gih . (7.22)

In addition, by the definition (7.5),

*

J J
g = g - (7.23)

Now, the symmetry relations on the f's can be derived easily using the definition
{7.16) and Eq. (7.23),

£l = ok (7.24a)
From parity conservation [using Eq. (7.21a)]
fin = () £y (7.24b)
Or, by combining the above two relations,
£ = (S et (7.24c)
From Eq. (7.21b),
fe = real (7.24d)
or, from Eq. {7.24c),
o =~ 0, Ffor odd (¢ + L) . (7.24¢)
If the s decay is parity-conserving, one has
=0, forodd?t . (7.25)
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The symmetry relations on the H's are readily derived, once the symmetry relations on
the multipole parameters and on the two f's are known. First of all, from the definition
(7.12) and Eq. (A.9), we have

H¥(emLM) = ()" H{2 — mLM) . (7.26a)
Also, from the definitions (5.51), (7.16) and (7.17),
H(mLM) = 0, if £>2sor L>2J . (7.26b)
From parity conservation in the J decay, using Eq. (7.24b),
H{zmLM) = (=) H{e-mLM) . (7.26¢)
If the s decay is parity-conserving, from Eq. (7.25),

H(ZmLM) = 0, for odd % . (7.26d)

If the argment for time-reversal invariance as given in Section 5.2 is applicable, from
Eq. (7.24e),

H(2mLM) = 0, for odd (¢ + L) . (7.26e)

Finally, parity conservation in the production process leads to the following additional
symmetry. If the JRF z-axis is in the production plane, from Eq. (5.55),

H(emLM) = (=)™ H(emL—n) (7.26£)
If the z-axis is along the production normal,
H{amLM) = 0, for odd M . (7.26g)

For the spin-parity amalysis, it turns out to be useful to invert Eq. (7.16) using
the orthonormality of the Clebsch-Gordan coefficients:

Ty 20 +1 :
g Im]an) = g [25 - J £u(sx'am|sA) . (7.27)

*
Maltiplying both sides by tiM, one obtains

ti; g;JJl'Lm|Jk] = Gy LM}, (7.28)
where
1 v-
Gy, (LM} = Z @';j: J (snem]sh) (£5)7 H(zmLy) . (7.29)
£

We shall see, in the examples to be given later, that fi is always a known quantity, being
proportional to a Clebsch-Gordan coefficient. Therefore, the GAA'(LWD is an experimentally
measurable quantity; it is this quantity that yields most directly the information on the

spin and parity of the resonance J.
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Because of the symmetry (7.26d), it is not possible to perform the sum on £ in
Eq. (7.29) for odd &, if the s decay is parity-conserving. It is easy to restrict,
however, the sum on % to even values by the following procedure: exchange the index X to

-A' and ' to -A in Eq. (7.27), and add the resulting equation to the original formula
(7.27), to obtain

el Ml + (O gt o) = 60 (7.30)

where the G£;2(Lwn now has the same form as the GAA,(LND of Eq. (7.29) but the sum is con-
fined to even values of 2. Therefore, if the parity is conserved in the decay of the in-
temediate resonance s, it is the G£;2(LND that is experimentally measurable. We shall see
later that measurement of the Gizg(LMD‘s for all allowed values of &, A', L, and M enables
us to determine uniquely the spin and parity of the J.

Let us note the following symmetry relations satisfied by the G(+)'s: from
Eq. (7.26c),

G L) = (- o) (7.31a)
and

W () = () Gk (7.31b)

In addition, the G(+}'s clearly obey the same symmetries as those satisfied by the multi-
pole parameters ti;.

At this point, we shall briefly mention how we can test experimentally the applica-
bility of the time-reversal invariance discussed in Section 5.2. It is clear from
Eq. (7.26e) that, if the H's are non-zero for odd (2 + L), the argument of Section 5.2 1is
not applicable; or, equivalently, one may lock for non-zero G{;;(LM] with odd L, since it
should be zero if the H's are zero for odd (¢ + L). From the point of view of the spin-
parity analysis, we may state that, in general, the H's with odd (2 + L) or the G(+)'s with
odd L may not be as useful in yielding the quantum mmbers of the J as the other H's or
G(+)'s, for they may be either zero or approximately zero.

In analogy to the two-hody decays discussed in Section 5.4, the joint angular distri-
bution given in Eq. (7.7) has a simple expansion in terms of the product of twe D-functions:

1oe) =) [22 * 1] [ZL + 1] H{2aLM) Dhr (2) Diga) - (7.32)

o dm an
LM

Note that this angular distribution is, of course, real, owing to the symmetry (7.26a) for
the H's. The formula (7.32) affords an alternative method of determining the moments Hj
by using the maximum likelihood method, one may fit the joint angular distribution with
the formula (7.32), using the H's as the unknown parameters after taking into account the
symmetries (7.26). One experimental uncertainty is, of course, how large a number one may
take as the maximum value of L (Lmax)' Perhaps the most reascnable procedure is to take
the smallest L for which an acceptable fit to the data can be obtained.

In the remainder of this section, we shall apply the general formalism developed so
far to a few concrete and, in practice, important examples. It is hoped that the examples
selected here are sufficiently diverse to give the reader an over-all picture of the
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various techniques involved and that, after going through these examples, he has acquired
enough skill with which he can tackle any new decay modes he may encounter. In fact, our
formalism can be easily generalized to treat resonances with decay products which both have
spin, for example A + w or p + w.

7.1 £(1385) + A + 7

In this case, the intermediate particle s is the A(1115) with snS = %+, which decays
into the (p + n ) system via the weak interaction. Note that the final particle s; is the
proton, i.e. sy! = %+. We wish to determine the spin-parity J" of £(1385) by the moment

analysis.

Let us first write the normalization (7.9) explicitly:

Bt tg = 283—+ =1
s0 that
g. =g =12
J . (7.33)
go=gl, = /2,

1
where £ = n(-)J+2. Since the i decay is parity non-conserving, fi is non-zero for both
=0 and 1:
fi=gl+tg =1
(7.34)
£ = (g5 - g2) Gam0l3a) -

We do not give the explicit expre551on for gA , but it is related to the well-known decay
asymmetry parameter o, so that f may be con51dered a known quantity.

Let us write down explicitly the G's using Eq. (7.29). For arbitrary values of L and
M,

Hioowa) + 2(341034) (£ H(1oLw)

o=

G, (M) =

Nh—' NII—‘

H{00LM), for even L (7.35)

= -‘/; (65" 1(00LM),  for odd L,

where one has used the symmetry (7.26c). Also,

6, (1) = 30~

2(3-311[33) (£ m(1iLm)

It

FSIC

NP

(577 H1LM)  [odd 1) . (7.36)

Using the relations (7.28) and (7.33), one cbtains for the ratio of Eqs. (7.36) to (7.35),

; 1]k
G {tM) 7 H{1LLM) . (7 lelJ%] (0dd L) .
G, J(LM) H{10LM) (JivolJ3)
From Eq. (A.17), one obtains the final result
> T 1
H(11L! [] 2J (0dd 1) (7.37)

[
H(10LM) ‘/ZL L+ 1)
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The formula (7.37) may be used to determine both the spin and parity of the resonance
J: the spin can be determined by evaluating the absolute value of the ratic of the two
moments, while the parity can be determined by the relative sign of the two moments. This
method has been used to determine the spin and parity of Z(1385). One must exercise some
care in using the formula (7.37), for the ratio of two experimental averages does not have
a Gaussian distribution, even though the averages themselves may be Gaussian.

A simpler approach might be to write formula (7.37) in the fomm
2J+1

e ————— H(10LM] = 0 dd L 7.38
’ j21(L+ 1) ot foad 1) -39

and, for given values of L and M, test this equality for all spin-parity combinaticns. In

H{11LM) -

this way, one can obtain the y? probability for each possible spin-parity assigmment. Of

course, it 1s necessary to choose the values of L and M such that both the moments in

Eq. (7.38) are appreciably different from zero (or different from the background). Other-
wise, the formula will give no differentiation between different spin-parity assignments.

Note that, although the formula (7.37) or (7.38) can be used for any odd L, it is most
useful for L = 1, for then it is applicable to any spin J 2 } [see Eq. (7.26b}]. If the
spin J turns out to be greater than I, one may use higher odd L as a consistency check.

7.2 A(1950) » A(1236) + w

We shall now treat the case where the intermediate resonance s decays via the parity-
conserving strong interaction. Specifically, we shall consider a high-mass isobar decaying
inte A(1236) + m. Note that in this case s Ns = V for the A and sT‘ = 72+ for the nucleon.

Let us first note that, because of the normalization (7.10) and the parity conserva-
tion in the A(1236) decay, we have

By T g; :% - (7.39)

Then, from Eq. (7.17), we see that
£ =0, for odd ¢, f; ={};0013), for even 2 . (7.40)

The G(+)'s are now experimentally accessible quantities given by

(+) B [22 + 1] (32" em|32)
Gi(LM) = > H{amLM) . (7.41)
M[ ) L 4 [%% iol%%] ( m )

Explicitly written, the G(+)'s have the form

G[%i]%(LM] = G[g’g LM) = 0 (7.42a)
th]%[m) = - [—-E—J_] H(22LM) (L2 2) (7.42b)
G[_*;u%(m] = - [~4—‘/_] H(21LM) (Lz1) (7.42¢)

(LM) = 3 H(ooLM) + 3H(20LM)  [even 1) (7.42d)
G(%*%}(LM] = }n(ooLm) - 3H(20LM)  (even 1) . (7.42€)
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The last two relations can be used to detemmine the following ratio, using the formula
(7.30),

J (+]
g _ 3
g G;L}[Oo]
22 22
1 — S5H(2000)

-~ . (7.43)
1 + SH(2000)

This allows us to write down the following spin formula, applicable if J 2 %:

(+)
g | SaUM (Jirojsd)
g‘%’% iy (I3L0lud)

(even L = 2} .

Or, more explicitly, by using Eq. (A.18),

(evenLz22) . (7.44)

[1 + SH(ZOOO]:| [H[OOLM] - SH[ZOLM]:| aL(L + 1)

1 - 5H(2000) | | Hi{ooLm) + sH{2oLM) | 1o 43I +1)-3

This formula is a potentially powerful one; it allows one to determine uniquely the spin
J z ¥ regardless of the parity of the parent resonance, if the relevant moments are found
to be non-zero for L = 2 and some allowed M.

It should be emphasized that we have been able to obtain the formula (7.44) as a con-
sequence of our assumption that the density matrix for the J does not depend on the invari-
ant mass w of the J. If this assumption is relaxed, both the t‘LJM and g‘;)t, are in general
functions of w and they camnot be separated from each other and treated as constants, once

the integration over w has been performed over the region of the rescnance J.

There is vet another formula by which one can determine simultaneously the spin and
parity of the parent resopance. Let us take the ratio of Egs. (7.42b) to {7.41c) and
utilize the relations (7.30) and (A.19):

H(22LM J+3
(z221) =& 2 : (even L 2 2], (7.45)

H(21LM) [L-1@+2F

-1
where € = n(-)J 2, Note that, again, the above formula can be used only if J 2 % [see
Eq. (7.26b)70.

Let us now consider the case when J = 4. From Eq. (7.26b), we see immediately that

H(zmLM) = 0 for all L > 1. (7.46)

Moreover, cﬂ} should be zero if either X or Af is equal to *%. Then, from Eqs. (7.42},

H(21LM) = 0 (L=1) (7.47)

and
H(2000) = 5 . (7.48)
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The relation (7.47) might not be a useful test, because of the possibility that it could be

a consequence of time-reversal invariance.

It is rather unfortunate that the parity cannot be detemmined within our formalism if
J =%. One can determine the parity, however, if the fermion s, is unstable and its decay
angles are also observed [see Button-Shaferzs)]. An example might be the following decay
sequence: Z(1820) - Z{1530) + w, =(1530) ~ £ + 7, and E »~ A + m.

7.3 B(1235) » 1 + w

As pointed out in Section 6, the decay of the w can be treated on an identical footing
to that of the " within cur formalism; we merely have to use the normal to the decay plane
of w as the analyser instead of the relative momentum of the p decay. We take up the 7w
decay mode as our first example of the spin-parity analysis of boson resonances, because,
owing to the narrow width of w, there is negligible interference effect coming from the
identity of two pions in the 47 final state. Thus, this decay mode constitutes an ideal
case for our moment analysis. This problem has been treated, using various techniques by

6) 15).

Zemachzg), Ademollo, Gatto and Preparata3 , Berman and JacobZ?), and Chung

Before we proceed to discuss the mww decay mode, we shall write down the form of the

G(+)'s valid for any arbitrary intermediate resonance s decaying into two pions. In this

case, we have s = 0 and g° = 1, so that

£5 = (s020|s0) . (7.49)

From Eq. (7.29), we obtain the formula

Py ) - 20 +1] (sx'm|s))
GodlM) = )’ [25 1) owlso) H{gmLM) . (7.50)

even £
This shows explicitly how the G(+)'s can be measured experimentally. Once they are measured,
the spin and parity of the parent beson can be determined easily by using the formula (7.30).

Let us come back to the discussion of the mw decay mode. The G(+)'S in this case are

given by relation (7.50} with s = 1. Explicitly, they are

m) = 3 1{0oLy) - 2H(20LM)  (even L) (7.51a)
M) = 2—% H{21LM) (L2 1) (7.51b)
M) = - % H(220M) L=2) (7.51c)
' im) = % H00LM) + 2H(z0LM)  (even L) . (7.51d)

The first information on the spin and parity can be obtained by noting the following.
From Eq. (7.21a), we see that gik, =0 for Aor A' =0, if ¢ = n(‘)J_l = -1. Therefore,
if ¢ = -1,

cle kM) = ) = o . (7.52)
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If this relation is not satisfied for some value of L and M, then we may conclude immedi-
ately that e = +1.

If £ is known, we can determine the spin itself by dividing Eq. (7.5la} by Eq. (7.51c).
Using formula (7.30), we obtain the following useful relation valid for J 2 1:

GEI*][LM] ] (J1Lol1)

vy (T-12p)
T F w % - M even L 2
[ L +1) ] [1 2303 + 1]} (evenL22),  (7.53)

where one has used Egqs. (A.20) and (A.21). Of course, this formula has meaning only if
the relevant G(+)‘s are non-zero for some value of L and M.

It is possible to obtain an additicnal spin formula applicable for the case & = +1
and J 2z 1. If g = 41, ggu is non-zero in general and related to g{; by

J [+
_511_ _ Gy ][00] (7.54)
J +] .
B Gy (00)
Now, the desired spin formula can be obtained by taking the ratio of relations (7.5la) to

(7.51d) and using Eq. (7.54):

o) i) (giwofan)

G, (00) cifLa)  (Jowoluo)

L{L+1)
2300 +1)

=1 - (even L.22). (7.55)

Therefore, if ¢ = +1 and J z 1, this formula supplies additional information on the spin J.

If J = 0, all H's should be zero for L 2 1. In addition, we see that, from Eq. (7.30),
the ngz(ﬂﬂ] vanish if X or A' is non-zero. Therefore, using Eq. (7.5la), we obtain
H(2000) = %4. Note that n = -1 if J = 0, so that £ = +1.

7.4 7,(1640) > 7 + £(1260)

Let us consider, as a final example of our formalism, the problem of analysing a
boson resonance decaying into 7 + f. The f meson is not a narrow resonance and the inter-
ference effect can be a serious problem, for our formalism does not apply in that case.
However, the formalism can be applied, for instance, if the analysis is limited to the
neutral decay mode m° + f with f decaying into the m'n system. In this case, there is no
interference effect, because each of the three pions has a different charge.
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As before, we start out by writing down the G(+)'5 explicitly (note ss = 27):

orum) = Li(ooun) - H{zouM) + 5 (a0M)  (even) (7.56a)
LM = ‘/—-32: h(21LM) - ﬁs- H(41LM) (L21) (7.56b)
Girkum) = - s(z2im) + 3 \/_g H(42LM) (L2 2) (7.56¢)
cm) = - 3 ‘/_ H(43LM) (L23) (7.56d)
) = 3 \/17—0 H(44LM) (L>4) (7.56€)
ol (Lm) = L nloorm) + Jii(20mm) - SHaoun)  (even L) (7.56£)
Gy (LM) = £ H(21) + 3‘/130 H(41LM) L21) (7.56g)
M) = - \/g H(22LM) - 3\/% H(42LM) (L22) (7.56h)
) = Lloom) + H(zoww) + H(aotm)  (even ). (7.561)

We want to determine the value of € = n(—)J_l. if £ = -1, we have from Eq. (7.2la}
that giA' =0 for A or A' = 0. Thus, if € = -1, we obtain the following conditions:

L) = el = d = o (7.57a)

Of course, this statement becomes non-trivial only for the allowed values of L as indicated
in formalae (7.56). If J =1 and e = -1 (i.e. JV =17}, both Eqs. (7.56b) and (7.56g)
should be zero, so that one has the additionmal condition

H(21LM) = H{41LM} = 0 (L=1or2). (7.57b)

Only one parity state is allowed if J = 0, i.e. n = -1, so that & = +1 in that case.

Once € is known, we proceed to determine J in the following manmer. First, consider
the case J = 0. Then, all the H's and G(+)'s for L z 1 should vanish. In additionm,
61} (@0) = 0, 4f A or A’ # 0, so that by using Eqs. (7.562) and (7.56), we obtain
H{2000) = H{4000} = % . Next, consider the case J = 1. Then, all the H's and G(+)'5 must

vanish if L 2z 3. In addition, we have the condition gkl, = (0 for A or A' = 2, so that
M) = M) = Grlem) =0 (L =0,1,2) . (7.58)

Again, these relations are non-trivial only for those values of L as are indicated in
Egs. (7.56a), (7.56b), and (7.56cC).

Now, we write down the spin-parity formula valid for all J 2 1. Taking the ratio of
qs. (7.56f) to (7.56h), we get

(+]
G ) _ € (o)1) (even12>2), (7.59)

6t (Lm) (J-112[J1)
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where we have used the relation (7.30). Note that this formula is "formally" identical to
formula (7.53). There exist three additional formulae, applicable if J 2 2:

()1 u
G[Z:][LM] . (J11)a2) (L>3) (7.60)
Gy (LM) (3-1L3]J2)
(Hriw
G fLM) . (J2L0|J2) (even L > 4) (7.61)
Aoum)  (g-2u4]30)
and
Gioo) Gy (z0lo2) even L > 2) (7.62)
choo) ciiLm) (J1L0]1)

Note that the formula (7.62) does not depend on the parity.

In analogy to the example of the B-meson decay, one can write down additional spin
formulae, if € = +1. We list them below for the sake of completeness. If e = +1 and
J 2 1, one obtains

o) UMy (icelan)

1t

N = (even L= 2) . (7.63)
airfoo) cSLm)  (JoLofso)
If ¢ = +1 and J 2 2, one has, in addition,
cooo) oLm) (g2t
= L = IJZJ [even L= 2] (7.64)

cthoo) M) (uoLojuo)

The ratios of Clebsch-Gordan coefficients appearing in Eqs. (7.59) to (7.64) may be ex-
pressed as explicit functions of J and L [see the formulae (A.20) and (A.24)].

TENSOR FORMALISM FOR INTEGRAL SPIN

In this and the next section, we consider the tensor wave functions describing rela-
tivistic particles with spin and satisfying the Rarita-Schwinger formalismSI). Our main
objective is to construct explicitly the tensor wave functions, following the method pro-
posed by Auvil and Brehmaz), and show how they may be used to write down the covariant am-
plitudes for physical processes. The advantage of using the temsor formalism is that a
spin tensor, its indices being those of four-momenta, can be coupled to any four-momenta
and/or other spin tensors to form the simplest scalar amplitude satisfying the requirement
of the Lorentz invariance.

As before, our main emphasis will be on the problem of describing resconance decays.
We will consider in detail how the helicity amplitudes are related to the coupling constants
appearing in the tensor formalism. In addition, we will demonstrate why it is possible to
use the non-relativistic formalism of Zemachas) in a relativistic problem. We shall see,
in fact, that the non-relativistic formalism is more convenient to use in a purely pheno-

menological approach than the fully relativistic Rarita-Schwinger formalism.
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In this section, we will concentrate on the problem of representing the integral spin
states in the tensor formalism. Our first task is to construct the non-relativistic wave
functions for particles of spin 1 known as the polarization vectors. They are the analogue
of the state vectors |jm) with j = 1, but the Hilbert space of which they form the basis
vectors is the familiar momentum space. As such, they carry indices of four-momenta as
well as the magnetic quantum nmumber m. We shall construct cancnical as well as helicity
state vectors and show that they transform in exactly the same way as the states |jm) or
|3x) under rotation.

The wave functions for spin 2 are given by the tensors of rank 2 which are constructed
out of two polarization vectors by coupling them with the Clebsch-Gerdan coefficients. The
states of spin 2 have five independent components corresponding to the different values the
magnetic quantum mumber can assume, whereas tensors of rank 2 with four-momentum indices
have 16 independent components. This implies that a pure spin-Z tensor ought tc satisfy
subsidiary conditions which reduce the mmber of independent components to five. These
subsidiary conditions are just those of the Rarita-Schwinger formalism. We shall see that
the cenditions for spin 2 can be easily generalized to those applicable to higher rank
tensors describing particles of higher spin. Tensor wave functions corresponding to higher
spin are constructed by coupling to the maximum possible spin, i.e. the rank of the tensors
is equal to the spin. In this way, the tensor wave functions of arbitrary spin automatically
satisfy the Rarita-Schwinger conditions.

8.1 Spin-1 states at rest

Consider an arbitrary three-momentum p. It may be specified in terms of the three
Cartesian orthonormal basis vectors e, as follows:

3
p = Z Pi&; » (8.1)
i=1
where ey, e;, and €; are the unit vectors along the x-, y-, and z-axis, respectively.

Alternatively, p can be expressed in terms of the spherical basis vectors g(m):

p= 7 pln)elm) (m--10+1), (8.2)

where

1 .
ele1) =+ /(e - ie)

(8.3)

g3

The vectors e{m) are the polarization vectors in the three-momentum space; they correspond
to spin-1 states at rest. In order to gain deeper understanding of these basis vectors, it
is first necessary to consider the rotation matrices acting on the momentum p and obtain an

explicit representation of the spin-1 angular momentum opcrators.

For the purposec, wWe represent e; as a column vector, so that p itself may be considered

1 0 0 b
e] = Q » €2 - 1 ] eg = 0 > P = pz] - (8‘4)
0 0 1 Ps

a colunm vector,
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Then, the rotation operator R acting on p is a 3 x 3 matrix:
3
Rp, = ) Ry; ps (i=1,23) . (8.5)
=1

As before, we consider always the 'active rotation', i.e. the rotation of momentum p with
respect to a given fixed coordinate system.

Consider now rotations of p by e with respect to the x-, y-, and z-axis to be denoted
by Rk(e), k=1, 2, 3. They are exhibited explicitly below:

/" cos ¢ —sin € 0 )

Ry(e) = sin £ cos € 0 {8.6a)
\_ 0 0 .
(" cos e 0 sin £ )

R,(e) = 0 1 0 (8.6b)
\_—sin ¢ 0 cos 6)

1 0 0
Rl[s) = 0 Cos € —sin € . (8.6c)
0 5in € Cos €

Let us denote by Sk the infinitesimal generators of the rotations Rk(e):
Rye) = e =%k | (8.7)

From formulae (8.6), we find that the matrices Sk have the following form (by considering
the limit & + 0}:

(Sdew = ~iewgn (8.8}

The matrices Sk are Hermitian and satisfy the relations
[51:S:] = iegen Sy (8.9a)
5% = 5,5, =21, (8.9b)

where the summation is implied over repeated indices and I is a 3 ¥ 3 unit matrix. These
relations show immediately that the matrices S constitute a representation of angular

momentum with eigenvalue one.

It is easy to see that the vectors e{m) given by Egs. (8.3) are just the eigenvectors
corresponding to angular momenta S, :

S,e(m) = me(m) (m = -1,0,41)

S,e{71) = V7 e(0)

(8.10)
S.e(t1) =0
Se(0) = /2 els1},
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where S, = 5, * 1 5, and e(m) is the colum vector given by

1 0
efs1) = * 71-2- g |, e0)=[o0]. (8.3a)
0 1

Comparing Eq. (8.10) with Eq. (1.2), we see that the vectors e(m) represent the spin-1 wave
functions, similar to the state vectors |Im) discussed in Section 1. As such, they carry
two different sets of indices, one corresponding to the z-component of angular momentum
and the other corresponding to the three-momentum index. It is interesting to note that,
once the angular momentum operator is given by Eg. (8.8), the corresponding eigenvectors
satisfying Eqs. (8.10) [or more generally Egs. {1.2)] can be deduced by considering S, and
S,3 1t can be shown that the simplest solution is just the set of eigenvectors given in
formulae (8.3a).

From Eq. (1.5), one finds that under a rotation R = R(a,B,y) e{m) transforms according
to

R(ouB,¥) e{m} = ) Dhoplangs¥) 5(m) (i =1,23) . (8.11)

We have dropped the symbol U[ ] from the operator representing a rotation R{wx,B,Y), in
order to emphasize the fact that canonical states e(m) are not the basis vectors of some
abstract Hilbert space but those of the familiar three-momentun space. There is an alter-
native way of representing a rotation on e(m). It follows from the fact that hoth the
momentum p and the polarization vector S(;I‘l) may be expanded in terms of the same set of
basis vectors es [see Egs. (8.1) and (8.3)]. If Rij is a 3 x 3 matrix acting on the com-
ponents p; as shown in Eq. (8.5), one finds

R[a,B,Y] ei[m) = Z R-lj(o.,B,Y) ej(m) [m = —1,0,+1] . (8.12)
j

The rotation matrix R(e,f,y) may be expressed in terms of the matrices Rk of Eqs. (8.6) as

follows:

R(x,B,Y) = Ra} Ry(8) Ry(Y] - (8.13)

The reader may easily check that Eqs. (8.11) and (8.12) are indeed identical by using the
explicit expressions for D, and Eq. (8.13).
The relation (8.12) may be used to show that an inner product of e(m) with an arbitrary

momentum vector is rotationally invariant, i.e.

p-em=p-eln), (8.14)

where
P = Ri; p; and g'(m) = Ry; ej[m) . (8.15)

This follows, of course, from the fact that the rotation matrices are orthonormal:

R;Jl = ﬁl] = RJL . (8-16)
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In other words, the inverse of a rotation matrix is equal to its transpose. As we shall
see later, it is the property (8.14) which enables one to mix p and e(m) to comstruct ro-
tationally invariant amplitudes.

Finally, let us note the following properties of the polarization vectors:

..e..*[m) * Q(Iﬂ'] = 6nm' (8.178)
Y. e(m) €j(m) = &5 (8.17b)
¢"(m) = ()" g(-m) . (8.17¢)

8.2 Relativistic spin-1 wave functions

The polarization vectors e(m) we have considered so far are, of course, the canonical
state vectors (or wave functions) describing particles of spin 1 at rest. By definition,
spin characterizes how a particle at rest behaves under spatial rotations. It follows,
therefore, that it cannot have the energy component, if the spin wave fumction is to be
represented in the momentum space. With this in mind, we define a four-vector describing

a spin-1 particle at rest,
e'{0,m) = {0, g(m)}

(8.18)
e (0,m) = {0, —¢(m)} .
We are now ready to define the canonical and helicity state vectors. In analogy to
Egs. (2.14) and (2.16), we write
(pim) = [RL,(p) R7'T", e(0,m) (8.19)
and
e(pr) = [Ri(p) T, e o), (8.20)

where Lz(p} is given in Eg. (2.6) and R is the rotation which takes the z-axis (or e;) into

. 1 0
Rp\} = a
0 Ry

and ﬁij is the 3 x 3 rotation matrix R(¢,0,0) of Eq. (8.13). If the momentum p is along
the z-axis, both Egs. (8.19) and (8.20) have the same form. Explicitly, one obtains

the direction of p, i.e. p = (8:4),

e"(pgel) = 7 J—_; (0,1,+1,0)
8.21)
- E (
e“{pz, 0) = [%, 0, 0, w] »
where E, P, and w are the energy, momentum, and mass of the spin-1 particle.

The property (8.11) guarantees that the states given by Egs. (8.19) and (8.20) trans-
form under Totation in the same way as the ket vectors |p,jm) and |p,j) discussed in

Section 2. Therefore, we have

ReM(p,m) = Z Dpm(R} €(Rp,m) (8.22)
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and
Re'(p, ) = (Rp,2) (8.23)

As before, the helicity vectors are related to the canonical vectors via

e(p2) = ). DulR) (pam) (8.24)

-~
n

where R is the rotation that appears in Eq. (8.20).

Listed below are a mmber of properties satisfied by the polarization four-vectors:

p'e,(p,m) = 0 (8.25a)

e(psm) e’(p,m) = -5, (8.25b)

P = ) epm) ellpom) - g,.(p) (8. 26a)
2.p) - - g t o, (8.26b)

vhere Pﬁ;) is the spin-1 projection operator to be discussed below and éuv is an object
which reduces to 5ij (no energy component) in the rest system of the particle with mass w.
The relation (8.25a) is a consequence of our definition (8.18); it may be viewed as

a necessary condition to be satisfied by a spin-1 wave function (with three independent
components), when it has been imbedded into a four-dimensicnal space. The relations
{8.25b) and (8.26) are generalizations of the rest-state formulae (8.17a) and (8.17b).
Note that the tensors P&;) satisfy

Pm plik |, — _p% (8.27)

Therefore, Pis) may be considered as a projection operator in the sense that, when it is
applied to any four-vector, the resulting four-vector is orthogonal to P, owing to the
property (8.25a). We point out that there exist relations identical to (8.25) and (8.26}
for the helicity state vectors e“(E,A).

Let us briefly discuss the parity and time-reversal operations on the polarization
vectors. First, the rest-states transform as follows:

Pg{m] = ng[m] (8.28)
te(m) = (=) gl-m) = ~e*n) , (8.29)

where one has used Egs. (3.7) and (3.8). The polarization four-vectors transform under P

and Tt according to Egs. (3.9) and (3.10):

pe,(pm) = ne(—pym) = —n2,” e,{p,m) (8.30)

wpn) = (-] e B, -m) = 2" ep,m) , (8.31)

v . . .
where Tu denotes the space inversion, 1.e.

= -1 . (8.32)
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According to Eqs. (3.11) ard (3.12), the helicity vectors transform as follows:
?eu[E:)\] =7 neu[_E’ —l) = n?uv eU(E,—)\] {8.30a)

te,(pd) = () el-pN) = - 20 ellp ) (8.31a)

A p3

8.3 Spin-2 and higher-spin wave functions

The wave functions describing spin-2 particles can be constructed out of the polariza-
tion vectors as follows:

euu[El 2m) = Z [lm11m2|2m] ep[g’mij ev[E!mz] . (8.33)
mymy
The rotaticnal property (8.22) for the polarization vectors guarantees that our spin-2
states have the correct rotational property:

Re,p,2m) = ). 00, (R) e (Rps 2n) . (8.34)

"
The spin-2 helicity states are given in terms of the spin-1 helicity vectors in exactly the
same way as the spin-2 canonical states in Eq. (8.33); one merely replaces the m's in

Eq. (8.33) by the A's. The relation (8.24) can be used to show that the spin-2 helicity
states are correctly related to the canonical states:

p’ 2.')\ Z DmA p: zm] » (8.35)

where, as before, R describes the p direction.

Now, spin-Z states have five independent components corresponding to the number of
different values the z-component of spin can take. The formula (8.33) shows, on the other
hand, that our spin-2 wave function is a tensor of rank 2 with sixteen independent compo-
nents. This implies that there exist supplementary conditions which reduce the number of
independent components to 5. These are just the Rarita-Schwinger conditions for the integral-
spin tensors. From the definition (8.33), we can show, in fact, that

pey(ps2m) = 0 (8.36a)
e, {p»2m) = e, [p, 2m) (8.36b)
g" e, [ps2m) =0 . - (8.36¢)

It is easy to see that these conditions limit to five the number of independent components
ine .
ny

In the rest frame of the spin-2 particle, the relations (8.36) reduce to

»

eiizm) = ej;(2m) (8.37a)

Z e;(2m)

i

I
o
.

(8.37b)
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The condition (8.36a) simply ensures that in the rest frame indices u and v can have only
the space components, i.e. 1, 2, or 3. Equations (8.37a) and (8.37b) tell us that the
tensors eij are symmetric and traceless.

Let us note that € is normalized according to

e:v[E' ) e"p, 2m’) = 8, (8.38)

which can be shown using Egs. (8.33) and (8.25b). In analogy to Eq. (8.26a), we may also
define a spin-2 projection operator:

pla) = Y e,(ps 2m) e34(ps 2m) (8.39)

m
with the normalization given by

ok,

P[zlﬂoae . p(z}was . (8.40)
Again, the spin-Z projection operator has the property that, when it is applied to any
second rank tensor, the resulting tensor satisfies all the conditions in Egs. (8.36). In
the rest frame, this operator simply projects out that part of a second rank tensor which

is symmetric and traceless. From this, one sees immedlately that in the rest frame
2
P[j_j]kz = Hou 850 T 850 83) — T84 ke - (8.41)
A projection operator defined in an arbitrary frame ought to reduce toe formula (8.41) in

the rest frame, so that it can be written

2 — _ _ _ — —
pEn]uB = %[gua Bug + ugp gua) 7%&4\! Eag 2 (8.42)

where éuv is given in Eq. (8.26b) and reduces to Sij in the rest frame.

it is clear how one can generalize to higher spin states the results we have developed
so far for spin-2 states. Let us briefly discuss the case of spin-3 states. They may be
described in general by a third rank tensor given by

eu\)o(E! 3m] = Z [2m11m2|3m] euv{Bs zml) ec(g, mz] (8.43)
M- My
with the normalization,
ef(p, 3m) e(p,3m) = 8, (8.43a)

It is easy to see that Eq. (8.43) has the proper rotational property analogous to Eq. (8.34},
implying that it is indeed a wave function appropriate for a spin-3 state. Therefore, the
wave functions (8.43) should satisfy the Rarita-Schwinger conditions:

pueuvc -0 (8.44a)
€ = pairwise symmetric (8.44b)
g““euvY =0 . {8.44c)
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The condition (8.44b) states that € o should remain invariant under interchange of any two

indices. In the rest frame, e reduces to eijk with only space indices and it is symmetric

Hvg
(pair-wise) and traceless.

The spin-3 projection operators can be constructed in a similar fashion as in Eq. (8.39):

kS
PtmlxmEW = Z euw(g. 3m) exey(pr3m) . (8.45)
m
In the rest frame, this operator projects out a symmetric and traceless tensor from an
arbitrary third rank temsor. Using this fact, it is easy to comstruct a projection opera-
tor in the rest frame analogous to formula (8.41):

P kemn = 3 ) 81z i g (8.45a)
P

(3)

— s
ijkemn P

P Dkemn 31815 Piakemn T S5k Paaiamn + Ok Plajinn) » (8.45b)
where the summation in the first relation goes over the six possible pernutations of the
three indices (i,j,k}. The second relation is clearly traceless in any pair of the indices
(i,j,k). The formulae {8.45b} and (8.41) are two special cases of the general formula given
by Zemachaa). In order to obtain a projection operator valid in an arbitrary frame, one
merely needs to replace the Kronecker &'s in Eq. (8.45a) by the g's of Eq. (8.26b}. The
reader is referred to Fronsdalgk) for an explicit expression of relativistic projection
operators of arbitrary spin.

8.4 Zemach formaiism

Let us now turn to a discussion of how the projection operators may be used to facili-
tate calculations in actual problems. For the purpose, it is best to consider an example;
let us suppose that we wish to describe the production and decay of the £(1260) meson. Then,
the simplest Lorentz-invariant amplitude will assume the form

Mg ~ Z pip;e,{pr 2n) elelps 2n) qfdf (8-46)
m

where p is the momentum of the f meson, pi and p: are the decay pion momenta from the f meson,
and qi and q; are some momenta taken from the production process (the Breit-Wigner fumction
for the f propagator has been suppressed).

let us explain at this point the meaning of the amplitude (8.46). The isospin-zero
nm scattering at the f mass is really a product of two processes, i.e. the production and
decay of the f meson (see Fig. 2). The amplitude corresponding to each process should be
lorentz invariant and exhibit the degree of freedom corresponding to the z-component of the
spin (the quantum nmumber m). Furthermore, one has to sum over the quantum numbers m in the
amplitude, since the f mesen is an intermediate resonance and is not observed directlf.
Note that all these requirements are neatly satisfied by the expression (8.46). The complex
conjugation of the second wave function in the expression signifies the production (and not

the decay) of a resonance.

Using the definition (8.39), Mgy may be written in terms of the projection operator:

Me; ~ prpr P 09 . (8.462)
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This example shows that it is not in general necessary to construct explicitly the tensor
wave functions; one only needs to know the corresponding projection operators. In the f
rest frame, the amplitude can be expressed as follows:

Mg; ~ P, D) 'r[fj][qlqz) , (8.47)

where ng) is a symmetric and traceless tensor given by

laa) - 12, et s49

Eq. (8.46a) may be reduced to the following equivalent form:

(2}

M ~ qua; T3 (pp,) (8.49)
where

. gk 2 k 2

I(U'J(Pnpz] = P[i _j]kE PP, - (8.50)

Both Eqs. (8.47) and (8.49) tell us how to construct amplitudes: out of the decay (or pro-
duction} momenta, construct a "pure" tensor (symmetric and traceless) and combine it with a

"raw'' tensor built out of the production (or decay) momenta, to obtain the desired amplitude.

This example jllustrates the use of angular momentum tensors proposed by Zemachaa) in
its simplest form. In his formalism, the pure spin tensors play the central role, thereby
avoiding the explicit construction of spin wave functions. In addition, by evaluating
amplitudes always in the rest frame of the particle to be described, his formalism avoids
the complication arising from the use of the four-momentum indices. Listed helow are a few

of the pure spin tensors (i.e. symmetric and traceless):

(a) = a, (8.51)
1ab) = Hab; + bia) - 1o, (ab) (8.52)
(3][ ) o a’ 1 + ]
1lj]( a] = aiajak - T [(Sijak (Sjkai (Skiaj » (8.53)

where a and b are arbitrary three-vectors. A general prescription for constructing pure
tensors of arbitrary spin can be found in Zemachaa}.

The Zemach formalism is particularly suited to problems where interference effects
occur due to the presence of identical particles. Let us discuss this problem by analysing
the decay of A,(1300) as an example. For simplicity, we shall discuss the decay of a posi-
tively charged A;:

AY(p) » < "(p) +o'lpy,) (8.54a)

A (p) » n'lp,) 1 o'p,) (8.54h)

where we have indicated the momenta of the particles in parentheses. Let us denote by w
and ws3 (Or wyi) the invariant masses of the A, and o?, respectively.
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In a Dalitz plot analysis of the 3w final state, one may integrate over the orientation
of the 3w system. From Eq. (6.20), one sees that in this case the distribution is independent
of the density matrix of the A; (i.e. independent of the production process}:

N A @55

7 1.2
dwdwi;dwy, -

where m is the z-component of the A; spin along the normal to the 3w plane. The decay
amplitude Fm may be expressed in terms of the Az(Jp = 2+) wave function euv:

F, ~¢" e (p,2m) , (8.56)

where ¢"V is a second rank tensor to be built out of the variables of the 3m system. Then,

2 v * *0f
Z |Fnl| ~ ¢’u eu\) eue ¢’
m
~ v pl2) aB
¢ Puvas cb*

~grpld e (8.57)

where the last line has been obtained using the reality of the projection operators. In
the A; rest frame formula (8.57) becomes

2 ij 2 ke
VAR ~ o B, 6 (8.57)
m
Let us now construct explicitly the tensor ¢"Y. Taking into account the Bose symmetri-~
zation between the two n+'s, the tensor can be written

" = D[Wza] ¢g: + D{wla) ¢;J3\J ’ (8.58)

where the first term corresponds to the process (8.54a) and the second term to the process
(8.54b). D{w) is the usual Breit-Wigner function with invariant mass w. ¢2¥ describes
the case in which the intermediate p® is formed out of w+(p2) and 7™ (pi):

128Y
¢g: = Z (pz - PJI eo[pzasmi] e;[pzs'ml] Piz Py e Pr' (8.59)
my
It can be shown that the decay amplitude given by
8 eulps 2n) (8.60)

is invariant umder parity operation by using Eqs. (8.30) and (8.33) [ the presence of the
totally antisymmetric 4th rank tensor in Eq. (8.5%) can be understood in this way ]. Using
the spin-1 projection operator (8.27), the tensor ¢2§ can be rewritten

927 = (D, = Py Pis Py£™°" 1y - (8.61)
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In the A, rest frame, the four-vector p has only the energy component, so that
Eq. (8.61) becomes

03 ~ s b Q= (p, ~ P * D, - (8.62)

Similarly,
b ~ s Pl 9 = (P, ~ P XD, - (8.63)

Let us write down explicitly the factors appearing in Eq. (8.57a):

¢*ij = D*(wza] ¢i33 + D*[wn] ¢}§ (8.63a)

P[izjlz ‘bu = Dw,,) T[izj](qzal p) + D(wy,) T[i?(qu’ p2] . (8.63b)

T£§) is the pure spin-Z tensor given in (8.52).

This example illustrates how one may construct the general distribution function for
the 3n Dalitz plot. The prescription is this: for any assumed spin-parity of the A,, con-
struct a raw tensor out of the variables in the 3m system consistent with the spin-parity
and the Bose symmetrization [e.g. Eq. (8.63a)], form a pure tensor through the use of the
projection operators, and multiply the two tensors together as shown in Eq. (8.57a), to
obtain the desired distribution function. This demonstrates the convenience of employing
the Zemach formalism for this type of problem.

8.5 Decay amplitudes in tensor formalism

Through a series of simple examples, we wish to show next how to construct invariant
amplitudes for resonance decays in the tensor formalism. The purpose is two-fold. Firstly,
we wish to demonstrate the connection between the decay amplitudes given in the tensor
formalism to those derived in the helicity formalism. Secondly, we wish to show how one
can use in a phenomenological approach the non-relativistic rest-state wave functions in

relativistic problems.

The examples we shall consider are all special cases of the following general problem,

i.e. decay of a resonance J into a particle s by a pion emission:
3(p) » s(p,) + nlps) » (8.64)

where the spin-parity and momentum for each particle are indicated in an obvious way. Let
us denote by w and w; the invariant mass of J and s, respectively. Let & = (6,¢) be the
spherical angles of p; in the rest frame of J(JRF). Then, the decay amplitude is given,
from Eq. (5.16), by

A =Ny B D5(96,0) (8.65)

and, from parity conservation,

Fo=eF,e=nnf-] " . (8.66)
The helicity amplitude has the following partial-wave expansion [from Eq. (5.18)]:
1
NF = ) (284 1) asosa|an) (8.67)

£
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The parity conservation implies that the partial-waves & can take only even (odd) values,
if the factor nng is odd (even).

Let us now see how the decay amplitudes constructed in the tensor formalism may be cast
into forms similar to Eq. (8.65). Wherever possible, we shall use the symbols introduced in
the previous paragraph.

iy 250"+ 0
The invariant amplitude for this decay may be written
A~ gpy'p, e,(p2m)
~ g P ey2m) , (8.68)

where g is the coupling constant and the second line has been evaluated in the JRF. Let us
rotate the wave function eij by R(¢,8,0}:

eifzm) = Reyfzm) = ). 0L(,8,0) e ) .
-
This can be inverted to obtain
*
e fzm) = ) 0 (0.0.0) el2m) (8.69)

hu |
L
ij
Using this fact, cne can easily evaluate the following term:

e!. is by definition a wave function with the quantization axis along the direction p;.

pps e 2m’) = Z (1m1m,|2m) plei(m,) pjejm,) = p’(1010]20) 6., » (8.70)

m;m;
where one has used the relation
p, - elm) = pén, - (8.71)

This relation follows from the fact that the quantization axis coincides with the direction
of p; and that the momentum p, may be thought of as having only a z-compcnent.

Combining Eqs. (8.69) and (8.70), one can recast the amplitude A in Eq. (8.68) into
*
A~ @gpi D0,8,0) (8.72)

Of course, one could have written down this formula immediately by applying Eq. (8.65).
The formula (8.72), however, tells us something further; it indicates that the helicity
amplitude F ought to have the dependence pf, commensurate with the D-wave in the di-pion
system, We shall see that this is a general feature with the tensor formalism. Namely,
the amplitude Fi, which is an undefined quantity in the helicity formalism except for the
symmetTy property {8.66), has a more explicit representation in the tensor formalism.
This point is illustrated further in the next example.
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i) 2¥+17 + 0"
This decay process has been considered previously. Let us write the amplitude in the
following way:

A ~ g€ e3(p,2) Dy py by €, (p)2m)
o (8.73)
~ gle’(ppr) x p,J' pJ ey fom) ,

where X is the helicity of the 1™ particle. As before, we express eij in terms of the e{j
whose quantization axis is along the pi direction:

e;{2m) = Z Dﬂ.[qa.ﬁ,ﬂ] e;{zm’)

= Z DE;J“,(@@,O] (tm,1m, |2m") ei(m,) e](m,)} . (8.74)
mflnlz
Note the following relation,
[g*[pl’ )‘] x Ez]i e;[mx] = ipl)\a}\,ml . (8‘75)

which may be obtained by using expression (8.21). Combining this with Eq. (8.71), one ob-
tains finally

A ~ {gp? (101|20)} D& (5,8,0) . (8.76)

This exercise shows that the helicity amplitude Fg has the following explicit expres-
sion

K ~ gpZa(ion2n) . (8.77)

Note that Fiz) satisfies the symmetry relations of Eqs. (8.66). Let us compare expression
(8.77) with the amplitude obtained by using Eq. (8.67) with & = 2:

F2) ~ a(20mn|22) . (8.77a)

We see that formula (8.77a) is equivalent to formula (8.77), if we set a, ~ g pi.

Next, let us consider the following non-relativistic amplitude:
A~ gle'M)xp,I' p) ej2m) , (8.78)

where e(A) is the polarization vector evaluated in the SRF (or the 1~ particle rest frame).
Formul; (8.78) is clearly non-relativistic, because g(k) and eij(Zm) are the wave functions
evaluated in two different rest frames. However, it can be shown easily that Eq. (8.78)
leads to the same result (8.76). In this sense, Eq. (8.78) is an equally valid description
of the decay process as the fully relativistic amplitude (8.73). We have now seen the
simplest example which demonstrates how it is possible to use non-relativistic wave func-
tions in a relativistic problem. A more complicated case involving two different ampli-

tudes is given in the next example.
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iii) 27+ 17 + 0
This decay involves in general two independent amplitudes, reflecting the fact that

there can be two orbital angular momenta, i.e. P- and F-waves. Let us write the invariant
amplitude as follows:

A~ g e(pyA) b} el 2m) + g,e*"(p, 1) p, p B e,ulps 2m) & (8.79)

where g, and g; are the two Lorentz-invariant coupling constants. This amplitude incor-
porates parity conservation in the decay in the sense that when the helicity vector is re-
placed by the canonical vector (i.e. replace A by m;), the amplitude is invariant under
parity operation [this can be shown by using Eqs. (8.30) and (8.33)]. Note that the am-
plitude A as it appears in Eq. (8.79) is not parity-invariant, simply because the helicity
A changes sign under parity operation.

Let us express the amplitude A in the JRF:
" . .
A~ ge(p, A} pl egy2m) + gwe(p, ) pt p; e;j(2m) - (8.79a)

Using the same technique we have used in previous examples, we expand eij in terms of the
ei . whose quantization axis points along the momentum p;. Afterwards, we use the relation
(8.71) and [use Eqs. (8.21)]

. . 2 E
elpp) glm) = [3 + 1 11 -3 ] 6, (8.80)

to cast the amplitude A into the following form:

A~ 8, 0 (5,6,0) (8.81)

where

1
B, = 75 &b

> E (8.82)
- 1 3 W
B~ % (a0 % + &5 ] -
Comparison of Eq. (8.81) with Eq. (8.65) shows that B, may be set equal to NJFi, which
has the following expansion in terms of the partial-wave amplitudes a, (2 =1o0r 3):
NZF[? = \/%al + a,
(8.83)
NZF[OZ}=\/?a]—u/?a3 -
Equations (8.82) and (8.83) can be used to solve for g; and g; in terms of a; and as:
g]pl:\/gal+ﬁa3
(8.84)

I

E—w] 1 [2E1+3w1]
3 1 1 = _—
g3p1 AE( W a,; E W dz .

We have now exhibited clearly how the Lorentz invariant coupling constants are related to
the partial-wave amplitudes. We see that in general it is not possible to define a Lorentz

invariant coupling constant which corresponds to a single partial-wave amplitude. The

www fastio.com


http://www.fastio.com/

ClibPD

- 56 -

reason is that the orbital angular momentum is a well-defined concept only in the parent-
resonance rest frame (the JRF).

One may ask the following question: Is it possible in the tensor formalism to con-
struct amplitudes corresponding to states of a pure orbital angular momentum? The answer
is that one has to use the non-relativistic tensor formalism. Let us examine the foliowing
non-relativistic amplitude:

A~be () plefam) + b, e ) ) (p) *(zm), (8.85)

ijk

where TE;% is the pure spin-3 tensor given in Eq. (8.53).

Let us proceed to the task of reformulating the above amplitude to the one similar to
Eq. (8.65). Using the by-now standard technique, we re-express e in terms of ei. as given
in Eq. (8.69). For the first term in formula (8.85), we evaluate [use Eq. (8.17&)]

e"(2) b3 e f2m) = p1017[23} 6,

to obtain the result
b, py(1017]20) D2 (6,6,0) . (8.86)

This shows that the first term is indeed proportional to the P-wave amplitude [see
Eq. (8.67)]:

1
a, = ﬁ b1p1 . (8.87)

The second term can be reduced to the desired form by using the explicit expression
for the third rank tensor given in Eq. (8.53). However, it is instructive to use the
following method, which is easily applicable to higher spin cases. Let us express the
tensor in terms of the projection operator:

(D) = Fokymn B 00 "
(8.88)
=) eind31) e (3u) pf pl p?
u
If we assume that the z-component u is defined along the direction of P1, then the tensor
reduces to the following simple form [it should be emphasized that this form does noi cor-

respond to a general expression; see Eq. (8.53)]:

[3)

TPy = p;(2010[30) (1010]20) e, (3,0}
(8.88a)
= \/%Pf &30 ,
where
e;5(3,0) = Z (112 - u]30) e5(1) egl2, —u)
(8.88b)

—\/—Z (301u]20) e;(u) eflan) .
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From the normalization (8.38), we see that

ehl(2u) e H2m) = 6,0 - (8.88c)

Note that this result follows because both the spin-2 wave functions have the same quantiza-
tion axis. Substituting Eq. (8.88) into Eq. (8.85), we finally obtain for the second term

- ﬁsz b, py(301M{21) D% (6,0,0) (8.89)

which shows clearly that this term corresponds to a pure F-wave amplitude. Comparing this
with Eq. (8.67), we may identify

iz
ay, =~ £ byp; - (8.90)

We have now completed the proof that the non-relativistic amplitude given in Eq. (8.85)
corresponds to a sum of pure P- and F-wave amplitudes. It is clear how to write down am-
plitudes similar to (8.85) for different spin-parity combinations for the parent resonance
J. Let us make the following remarks concerning this type of amplitude. First, it gives
the correct angular distribution in the JRF corresponding to a given orbital angular momen-
tun. Second, it is ''relativistically correct' in the sense that by and b; can be expressed
in terms of the lorentz invariant coupling constants g; and g; [see Egs. (8.82)]. In a

phenomenclogical approach, it is clearly irrevelant as to which set of constants are used
to describe the amplitude.

Suppese that the vector particle s decays into two pseudo-scalar mesons. In order to
describe the over-all amplitude for the J decay into three pseudo-scalar mesons, one has to
multiply Eq. (8.85) by a factor E + e(A) and sum over the helicity A, where E is the rela-
tive decay momentum in the SRF. Owing to the relation (8.17b), the net effect is to replace
eI* () by K in (8.85):

A~ b kdpie; (an) + bkt 1 (p) €™ (am) (8.91)

The Dalitz plot distribution is obtained by taking the absolute value of A and summing over

m [see expression (8.57)]:

. Z |A] ~ ¢5; P[-i-]u by (8.92)
m
where
815 ~ by &, py; + by k" Tgfi]j[PJ (8.93)
and
)
P[izju s~ by T(fj][k, p) + by X' T[fiJj(pl] . (8.94)

Note that the second temm in Eq. (8.94) is already symmetric and traceless in the indices
iand j.
This exercise shows how to calculate the Dalitz-plot distribution function out of the

non-relativistic amplitude we have constructed. Tt is important to realize that we are
using momenta defined in two different rest frames; the p: is given in the JRF, whereas
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the k is defined in the SRF. Of course, this is a consequence of the non-relativistic
approach we have adopted here. For a more general discussion of the non-relativistic

33).

tensor formalism, the reader is referred to Zemach

One may consider Eq. (8.92) as defining the distribution in the internal angle,
Cos 8y v 5 " Pi- 0f course, the distribution in cos &; may be derived within the helicity
formalism. Note that the decay we consider here is a special case of the general sequen-
tial decays considered in the previous section. The desired distribution in cos 9, is
obtained by integrating over all angles except cos 6; in Eq. (7.7):

I(cos &) ~ ), gdle)T (8.95)
A
where gi;) is related to the partial-wave amplitudes a, (¢ =1 or 3) via
1 2
8 ~| T G+ 1t auonp)f (8.96)

2

It can be checked that the angular distribution obtained using Eq. (8.92) is indeed iden-
tical to that given by formula (8.95).

9. TENSOR FORMALISM FOR HALF-INTEGRAL SPIN

In this section we wish to develop the tensor formalism for wave functions describing
relativistic particles with half-integer spin. We construct explicitly the tensor wave
functions and illustrate how they may be used to construct invariant amplitudes. We have
seen in the previous section that it is advantageous to use the purely non-relativistic
formalism, whereby one employs only the wave functions evaluated in the rest frames. For
this reason, we shall first concentrate on the non-relativistic two-component tensor
formalism and then generalize later to the four-component tensor formalism, which satisfies

1)_

the Rarita-Schwinger conditions®

Our first task is to comstruct the spiner wave functions describing spin-% particles
at rest, and show how the Pauli matrices may be used to build up the rotationally invariant
amplitudes. Next, we discuss the spin-% wave function constructed out of a polarization
vector and a spinor, and give the subsidiary conditions limiting the number of independent
components to four. We have seen in the previous section the importance of the projection
operators which are constructed from the spin wave functions. The pure tensors, normally
obtained by the use of the projection operators, can alsc be constructed in the following
marmer for half-integer spins. Let T(n) be a pure tensor for an integer spin n. The pro-
duct of T(n] with a spinor will then correspond to a spinn + % orn - ¥%,. As will be
shown in this section, it is a simple matter to project out the spinn+ % orn - %

component from the product. This is the approach adopted by Zanachaa).

As for the relativistic wave functions for half-integer spins, our starting peoint is
the Dirac four-component formalism for spin-} particles. Following Auvil and Brehm?z), we
then combine the spin-} wave function with the relativistic tensor wave functions of the
previous section to form explicitly the tensor wave functions for arbitrary half-integer
spins. We shall show that these wave functions satisfy the Rarita-Schwinger conditions.
The explicit form of the relativistic projection operators correspending to arbitrary half-

integer spins has been given by Fronsdal®*).
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9.1 Spin-'% states at rest

States corresponding to a particle of spin-¥. at rest have two independent components,
owing to the two values the z-component of the spin can take. In this case, the basis vec-

tors may be given by the spinors or two dimensional column vectors:
X+y-() =03 (9.1)

States x(m) are, of course, the analogue of the ket vectors |jm) with j = % [see Egs. (1.2)].

It is well known that the representation of the angular momentum satisfying Eqs. (1.2)

in the spinor basis is given by

(9.2)

=
N

NI =

=

where ch is the Pauli matrix:

S R (R AR T

In fact, once the spin-'% basis vectors are given by Egs. (9.1), the corresponding angular
momentum matrices can be derived using Egqs. (1.2); the result can bhe expressed as in

Eq. {9.2)}. This is to be contrasted with the approach we have taken in the previous sec-

tion. There we have started out with 3 x 3 rotation matrices and, by considering the in-

finitesimal rotations, found the 3 x 3 matrix representation of the angular momentum, and

then "derived" the corresponding basis vectors, which turned out to be the polarization

vectors.

Under rotation, states y(m) transform according to {see Eq. (1.5)]
U[R{esg,v)] X(m) = ) D2, () X(m) . (9.4)
n
The normalization and the completeness relation for x(m) have the standard form:
X'(m) x(m) = 4

mm’

Y x(m) x'm) =1,

m

(9.5)

where x+(m) is the Hermitian conjugate of x(m), i.e. a two-dimensional row vector, and I is

the 2 x 2 unit matrix.

We shall now derive an important property which is that the Pauli matrices ¢ may be
considered a vector in the construction of invariant amplitudes. For the purpose, let us

exhibit explicitly the 2 x 2 rotation matrix:
— - o . B A (9.6)
U[R[a,B,Y]] = exp | 150y exp |15 0, eXp |71 5 Ty) - .
Each factor in this expression can be expanded by using the following general property:
e 8% = cos @ ~in-g sin G , (9.7)

where n is a unit vector. We are now ready to prove the following relation:

U'[R]o; UR] = Ryjo05 - (9.8)
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If UR] is given by Eq. (9.6), Rij is an element of the 3 x 3 matrix given in Eq. (8.13).

It is a straightforward algebra to prove the relation (9.8) by using Eq. (9.7). The scalar
product ¢ +« p for an arbitrary momentum p is a rotational invariant in the sense that

X'(m) g+ p X(m,) = xm) g-p' Xlm,) , (9.9)
where the primes indicate the rotated quantities:

u[R]} X(m)

P; = Rij pj -

X(m)
(9.10)

The relation (9.9) is the analogue of Eq. (8.14} for the polarization vectors.

One important characteristic of the product o « p is the fact that it is a pseudo-
scalar, because the angular momentum vector J = ¥, o is a pseudo-vector. This allows us

to write down, for example, a general amplitude for the decay of the A(1115) via the weak
interaction:

m ~ Xy(m') Ax,(m}, (9.11)

where the subscripts denote states corresponding to either a nucleon or a A, and A is given
by
A=a,+ag-p . (9.12)

ap, and a; are the coupling constants and p is the momentum of the nucleon in the A rest
frame. Note that we have used in formula (9.11) the wave functions {or states) evaluated
in two different rest frames. The situation here is identical to that discussed in the
previous section for integer spins; in a phenomenclogical description, Eq. (5.11) is a
perfectly valid expression in the sense that the constants a, and a, are merely linear com-
binations of the Lorentz invariant coupling constants. We shall give the explicit rela-
tions when we take up the discussion of relativistic wave functions.

9.2 Non-relativistic spin-¥% and higher spin states

Wave functions corresponding to a particle of spin ¥, may be constructed by coupling
the polarization vector with a spinor:

XGm)= ) (im jm,|3m) e(m) X(m,) . (9.13)
mima
We know that both e(m;) and x(m,) transform under rotation in the standard way. The Clebsch-
Gordan coefficient in Eq. (9.13) ensures that the states y(%m) transform under rotation as
those of a particle of spin-% [use Eqs. (8.11), (9.4), and (A.14}]:

U[R(o8,Y)] X(Em) = T Dhy(eY) X(2m) (9.14)

States x(%m) are by definition three-vectors, each component of which is a spinor. There-
fore, there are six independent components for x(%m). On the other hand, states of a pure
spin-¥% particle have only four independent compenents, so that K(?zm) of Eq. {9.13) ought
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to satisfy two subsidiary conditions. It is a matter of straightforward algebra to prove
that the desired conditions assume the following form:

g+ x(m) =0 . (9.15)

The wave functions 3(%&m) have the following simple normalization:
t )
X'(zm) « xzm) = &pne (9.16)

+ . . . . .
where ¥~ is a three-vector with each component being a two-dimensional row vector. The
outer product summed over all spin states defines, as before, the spin-¥ projection
operator

Py =) (3w xj(Zm) (9.17)

with the normalization given by

2 3 3
Pl
k

By definition, the projection operator has the property

3
P[-fj = Pgﬁ] . (9.19)
Because of the condition (9.15), it satisfies, in additiom,

o, P =0. (9.20)

iy
The following form clearly satisfies Eq. (9.20):

Doy L
ij ij 3 T;0j « (9.21a)

It is simple to show that this form also satisfies Eqs. (9.18) and (9.19). Equation (9.21a)
may be recast into the form:

@G_ 2

Pij = ? [61} + '%" E‘ikj Uk] . (9.21b)

We shall give later a general expression for half-integer spin projection operators.

Let us go on to a discussion of spin-Y, wave functions. They may be constructed by

coupling spin-2 wave functions with a spinor:

X f3m) = 3 (2m 7mgl2m) eym) x(m,) (9.22)

mymy

By construction, this wave function has the correct property under rotation:
5
U[R(o,Y)] Xi3m) = ) Dhglousst) X 3m) - {9.23)
.

Because our wave functions have been constructed by coupling to the maximum possible spin,
it can be shown that the following expression is equivalent to Eq. {9.22):

Xij[%m] = Z (%mllmzlgm] Xi(3m,) ejm,) - (9.22a)

My

www fastio.com


http://www.fastio.com/

ClibPD

- 62 -

Now, we are ready to enumerate the supplementary conditions on Xij limiting the number
of independent components to six. From Eq. (9.22) we see that Xi is symmetric and trace-
less in the indices i and j. On the other hand, we have an additional condition from
(9.22a) and (9.15)

o X3ml =0 . (9.24)
Let us multiply Eq. (9.24) by o and sum over the index j. Then, we obtain
(85 + 1 €54 o) Xij[gm] =0. (9.25)

This relation shows us that, if Xij is symmetric, Eq. (9.24) automatically ensures that it
is also traceless. It is thus clear that a symmetric Xij satisfying Eq. (9.24) has indeed
six independent compeonents.

The spin-¥, wave functions are normalized according to
t(s =
Z Xi5(3m) X35 m) = Sy (9.26)
ij
and give the spin-% projection operator

P%)kz = Z Xj.j[%mJ xiz[% m] - (9.27)

m

This operator has the following properties:

I 3
Z Pijab Pabics = P[fjkz (9.28)
ab
i )
Pijke = Piaij (9.29)
3 _
Ui Pijxe =0 . {9.30)

Of course, the projection operator is symmetric and traceless in the pairs of indices (i,j)
and (k,2). We give below explicit expressions for the spin-% projection operator, as well
as the general formula corresponding to arbitrary half-integral spins.

9.3 Non-relativistic spin projection operators
Consider the expression

_ 3 (3}

(3)
P‘izjkf = 7 OnCn Ppijnke » (9.31)

where p(3) is the spin-3 projection operator [see Eq. (8.45b)]. It is clear that the pro-
Jection operator (9.31) satisfies Eq. (9.29). It also satisfies Eq. (9.30), since

B _3 3)
0y Pike = 7 (2603 — 0p03) 0y P[mijnkE

5
~ On Pl[rf_jjkﬂ .
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It can also be shown that Eq. (%9.31) obeys Eq. (9.28). The formula (9.31) is a special
case of the general expression for projection operators given by Fronsdalah). The non-
relativistic version of his formula reads as follows (n 2 1):

[n+3) _(nt+1 (n+1)
LI [Zrl—F 3] Ok O Pijip 2y, 2 (5.32)

where n is an integer and P(n+1) is the projection operator for spin (n + 1). Note that

application of this formula for spin-% gives immediately Eq. (9.2la).

After some algebra, Eq. (9.31) can be re-expressed in the following form

2] 2) 1 2 2
P[izjka - ngu - §[Uiﬂm PEIlJka +ojon P[in?kz] ’ (9.33a)

where P(*) is the spin-2 projection operator [see Eq. (8.41)]. Or, equivalently,

[5] _ 3 2] i 2 2
P = T p['jkE + g[einm oy PEnJ}k.E + €inm On P(im]kz] . (9.33b)

Note the similarity of this formula with the form of the spin-% projection operator given
in Eq. (9.21b); these are the two simplest cases of the general formula given by Zemachas).
Let us briefly outline his derivation. If we combine a pure tensor of integer spin n with
a spinor, the product can at most describe spins n + % or n - ¥%. The operator projecting

out the (n + %) component is well known; combining it with the spin-n projection operator
PM ey,
p[“*%] -

n+1+g.57]p0, (9.39)

1
Zn+1
where §n 1s the spin-n angular momentum operator given by

5(t) (9.35)

st =

=

1=1

and S(i) is the spin-1 operator acting on the ith vector index, its matrix element being
given by Eq. (8.8). The reader can check that application of the formula (9.34) for spins
% and %, gives Egs. (9.21b} and (9.33b), respectively.

Let us now turn to a discussion of the half-integral spin tensors. We shall give ex~
plicit expressions for the spin- and -% tensors constructed out of an arbitrary three-
vector a:

1a) = a1 g+ a)
(9.36)

!
i

[a~+%gx,a:|

and

- +[aio;+a,0,) (g-a) - (9.37)
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0f course, these have been obtained by applying the projection operators (9.21) and {9.33).
These tensors satisfy the constraint

g+ T#fa) = 0 (9.38a)

o; TE%][a] =0 (9.38b)

5
and Tijé) is, in addition, symmetric and traceless.
There exists an alternative way of constructing the spin tensors. It consists in
multiplying the pure spin tensors by a pseudoscalar {v +« a) from the left. The resulting
tensors are then appropriate for describing particles of opposite parity. Let us write

¢ Ha) = 1+4)a) (g ) - (9-39)

Note that the tensors Q satisfy the constraint (9.38), because the T's obey the constraint.
The explicit expressions for the spin-%} and % tensors are:

2

o) = alg-a)- 5 ¢ (9.36a)
and

Q[igj)[a] = a;afg-a) - a?z Sifg-a) -

- 8?2 [ai UJ‘ + aJ- Oi] . (9.37&)

The spin tensors Q may be obtained in the following alternative way:

(1}

M fa) = 0, 1Y, (a), (9.40)

where T(n+1) is the pure tensor corresponding to the integer spin (n + 1}. Note that the
tensors Q defined by Eq. (9.40) are transverse to g; this can be shown by following the
same argument used in the discussion of Eq. (9.31). One can prove that the tensors (9.40)
are identical to those defined by formula (9.39), using the general expression (9.32)

for the half-integral spin projection operators [for this proof, one needs in addition the
formula {3.28) of Zemachas)]. The proof is simple for spin-3% and %; one merely needs
to contract the spin-2 and spin-3 tensors given in Eqs. (8.52) and (8.53) with g, to obtain
the desired results (9.36a) and (9.37a).

Later, we shall illustrate with simple examples the uses of the spin tensors given in
this section.

9.4 Dirac formalism for spin-'%% states

We adopt the four-component Dirac formalism to describe the relativistic spin-Y%
states. In the rest frame, the two-component spinors x(m) are generalized to the four-
component spinors u(0,m):

u(o,m) = [X[m)] . (9.41)

0
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Let us suppose that a spin-'%4 particle with mass w has momentum p and energy E in an arbi-
trary frame. The boost operator which takes the rest-state wave function u(0,m) to that
of momentum p can be written

(9.42)

oli(p)] - [

cosh a/2 g - p sinh a/ZJ
»

o+p sinh a/2 cosh o/2

where f is the unit vector aleng p and tamh a = p/E. Then, the inverse of the boost

operator is given by

o [L(p)] = !D[L(—.E)] . (9.43)

The formula (9.42) is the analogue of the boost operator (2.11) for arbitrary
spin. However, it is different in one important respect; the operators (2.11) are
unitary, whereas the "boosts' given by expression (9.42) are not unitary. In fact,
there are two different ways of representing the homogeneous Lorentz group. One is the
infinite-dimensional unitary representation, in which the infinitesimal generators are
given by the Hermitian operators J and K [see Eq. (2.11)]. This is the representation we
have used in Section 2. The other is the finite-dimensional non-unitary representation,
where the generators of the boosts K may be given by either +iJ or -iJ so that K is not
Hermitian if J is Hermitian. The operator defined in expression (5.42) corresponds
to the second representation, in which the boost generators corresponding to both +ig/2
and -ig/2 have been employed. The reader is referred to Froissart and Omnésa) for a dis-
cussion of these topics. It should be mentioned, however, that the form of the boost
operator we have adopted here is not the same as that given in their article.

In analogy to the formula (2.12), the boosts (9.42) along an arbitrary direction can
be re-expressed in terms of the boosts along the z-axis:

o[ip)] = o[R] #[L(p)] 97[R] , (9.44)

where R is the usual rotation which takes the z-axis into the direction of the momentum P,

o[R] = [U[ﬁ] ; ] (9.45)

0 VEY

and U[ﬁ] is the 2 x 2 unitary matrix given in Eq. (9.6). It is easy to check the relation
(5.44) by using Eq. {9.8). We are now ready to define the canonical and helicity states
in the four-component formalism:

u(p,m) = #{1(p)] u(0, m)

o[R] o[L(p)] #7[R] ufo,m) (9.46)

il

and

c
ranl
v
bl
f—
f

o(1{p)] 2[R ] u(0, m)

o[&] 2(L,(p)] u(0,m) . (5-47)

1l
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Using the explicit expression (9.42) for the boost operator, the canonical states (9.46)
can be cast into the familiar form

X(m)

a.ep (9.46a)
Frw X

The rotational property (9.4) for the two-component spinors assures that the canonical
and helicity states have the correct rotational property:

g[R] p’ I[l Z Dm o Rp’ ) (9 -48)

o[R] u(p,2) = ulrp,)) (9.49)
The helicity states are related to the canonical states via the usual relatiom,
Z D2,(R) u(p,m) (9.50)

Now, the states of a spin-¥, particle have two degrees of freedom. This means that,
if the four-component spinors are to describe spin-Y%, states, there has to be a supplemen-
tary condition relating the upper two components to the lower two components in the spinor.
This supplementary condition is in fact the well-¥nown Dirac equation:

(Yp,—wulpm) =0, (9.51)

where the Yu's are the familiar 4 x 4 matrices satisfying the anti-commutation relation

Yu Y\J + -Y\) -YU — zgu\) (9.523)
and are given by
0 1
Y=y, = (9.52b)
0
i . (0
yhe oy o= (9.52¢)
GL
0
Y=, = [1 ] =iy y' vyl (9.52d)
Y= Y: _ Y;h Y=y YEYE Yy = —y0ySy0 {9.52¢)

Using Egs. (9.46a), (9.52b), and (9.52c), one can easily verify the Dirac equation (9.51).

Let us define the "adjoint’ spinor,
tp,m) = u'(p,m) ¥°, (9.53)

which obeys the adjoint Dirac equation

op.m) (Y'p,—w)=0. (9.54)
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Note that the boost operator (9.42) may be expressed as
o[1(p)] = o7L(p)] = Yo L] Y, (9.55)
so that the adjoint spinor takes the form
U(p,m) = 6(o,m) 97 [L(p}] . (9.53a)
In terms of the adjoint spinors, the normalization condition may be given by

ti(p,m) ulp,m’) = &, (9.56)

and the projection operator can be defined

2., ulpm) alp,m)

m

il

A_,_(p)

1

o (y* p, + w) , (9.57)

It

where one has used Eq. {9.53a) to obtain the explicit expression.

Let us now turn to a discussion of an important property of the y" matrices:
o7 [a] Y ofa]= A", ¥, (9.58)

where A denotes an arbitrary Lorentz transformation. If A represents a rotation, one can
readily prove this formula by using Eq. (9.8) for the Pauli matrices. One can alsoc easily
prove it for the case when A represents a pure Lorentz transformation. The reader may
verify this for a Lorentz transformation along the z-axis by using the relations (2.6) and
(9.42). The property (9.58) implies that the combination

u(p; m') ¥* u(p,m)

behaves like a four-vector under Lorentz transformations. This allows one to mix Yu with
any four-momentum to construct Lorentz invariant amplitudes. One may think of this as the
relativistic generalization of the property {9.9) for the Pauli matrices.

Let us give the transformation property of the four-component spinors under parity
and time-reversal operations. Using Egs. (3.9) and (3.10), we cbtain

HU(E» m) = HU(—E. m) =Y’ u[g. m) (9.59)
TU(Q, m) = [“]%Vm u(-p,-m) = ¥’y u*(p,m) , (9.60)

where n is the intrinsic parity of the spin-%, particle. The last expressions in (9.59)
and (9.60) can be checked by using Eqs. (9-46a), (9.52b), and (9.52c). The product v3y!
in Eq. (9.60) Tepresents a rotation by m around the y-axis, which is associated with the
action of T as explained in Secticn 3; note that

-ig, 0 exp [—i% Oz] 0
Yiy! = = . {9.61)
i

0 —ig,
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The adjoint spinors transform under I and T according to
G{p,m) T' = nialp,m) ¥ (9.59a)

a(p,m) T = T¥p,m) v, 7, . (9.60a)

The v® matrix in Eq. (9.52d) is a pseudoscalar in the sense that the combination

u(pym) ¥° u(p, m)
reverses sign under parity transformation [see Eq. (9.52e)].

Let us now come back to the discussion of the A(1115) decay. We may write for the ex-
plicitly covariant decay amplitude,

m ~ Gypsm) Buyg,m) , (9.62)

where the first (second) spinor corresponds to that of the nucleon (the A), and B has the
general expression

B=g +g¥, (9-63)

where go and g: are the Lorentz invariant coupling constants. Evaluating the expression
(9.62) in the A Test frame, we can find the relationship between the relativistic and non-
relativistic coupling constants [ compare expressions (9.11) and (9.62)]. They are

= (B s,

g (9.64)
- [Zw[E + w]]% !

where w is the mass of the nucleon and E is its energy in the A rest frame.
9.5 Relativistic spin-¥, and higher spin states

Wave functions corresponding to relativistic particles of spin j(= n + Y%, n = integer)
can be constructed by coupling the spin-n tensor of the previous section with the four-
component spinor. The rotatlonal property (9.48) for the spinors and the similar property
for the integer spin tensors [e.g. Eq. (8.34)] assure us that the desired wave functions
can be written

UEI...UH[B’ jm) = Z (nm, %mzljm] eglmpn(g’ nm,) U[Brmz]: (9.65)
mmz
where e(p,nm;) is the spin-n tensor to be constructed in the manner described in the pre-
vious segtion. Of course, the adjoint wave function is constructed in the same way by
coupling e*(p,mm;) with u(p,m,). Under rotation, the spin-j wave functions transform
according to .

o &) u(p, jm) = T, 0%a(R) ulRp, ju) . (9.66)

m'
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The wave functions given in Eq. (9.65) are, of course, the cancnical wave functions. The
helicity states may be constructed by merely replacing the m's in Eq. (9.65) by the i's
It can be shown that the resulting helicity states are correctly related to the canonical
states via

p’ J)\ Z Dm)\ P’ Jm] ’ (9.67)

where R is as before the rotation which takes the z-axis into the direction of p

The spin-j wave function (9.65) is a four-compeonent spinor with the four-vector in-
dices 11 .- My Since it describes a state of spin j, it can have only (2j +1) independent

components. The desired supplementary conditions are just the Rarita-Schwinger equatlons ):

(v py = W)y, =0 (9.68a)
Yoo = oo (9.68b)
P U, = (9.68¢)
Yu, , =0 (9.68d)
g Uy, =0 (9.68¢)

where w is the mass of the spin-j particle and p is its four-momentum. The relation (%.68d)
is the relativistic generalization of the conditions (9.15) or (9.24). The reader

may verify the relation (9.68d) for spin-% by writing down the explicit expression for the
spin-% wave function and carrying out the necessary algebra. The condition (9.68¢) 1s not

an independent condition; it is in fact a consequence of the relations (9.68b) and (9.68d).

The spin-j wave functions u are normalized according to (j = n + ¥2)
= . e D 1
uul...un(g’ Jm] u'l un(g, Jm ) = [_]I - (9.69)

and they define the projecticn operator

(9)

Hpseekip V1e eV

Z Pesebin B p’ Jm) uvl W, [p’ jm) . (9.70)
m

This operator obvicusly satisfies all the conditions of Eqs. (9.68); in addition, it has
the properties:

p(.ﬂ p[ﬂ“l'"o‘n

S vy, = () B (9.71)

Hyssslly VyeesVp

(i =0 EJ) y0

Hyesslpy ViseaVp Ul Vp Hpeesbipg

. (9.72)

The explicit expression for the projection operator has been given by Fronsdalsu). It may

be written, in our notation,

Uyesnbp VyueaVpy n + 3 Hijeastp YV)eeeVp
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where A, (p) is the spin-Y% projection operator given in Eq. (9.57) and p(n+1} is the pro-
jection operator for the integral spin (n + 1). Bvaluating this in the rest frame of the
spin-j particle, one obtains the non-relativistic version given in Fq. (9.32). Let us give
an explicit expression for the relativistic spin-%, projection operator:

— 1
P = A+(p] [guv + 3 Bua e Eu YB:I . (9.74)

It can be shown easily that this operator satisfies the properties (9.71) and (9.72), as
well as the conditions (9.68). Note that Eq. (9.74) reduces to Eq. {(9.21a) in the rest
frame.

9.6 Applications
We give here a few simple examples to illustrate the uses of the tensor formalism we
have developed so far. Through these examples, we wish to exhibit the connections between

the relativistic and the non-relativistic formalisms and further the comnection between
these and the helicity formalism of Section 3.

i) n'paTt236) ~ 1'p

The invariant scattering amplitude for this process is proportional to

me; ~ ) ulpe mg) pfu(p, im) Gfp, 3m) p)ulpym;) » (9.75a)
m
where the subscripts i and f refer to the initial and final protons and p is the N

momentum. By means of the spin-¥, projection operator, the transition amplitude can be
reduced to

g
Me; ~ Upp me) ph PE?\] p} ulpimy) (8.75b)

Using the expression (9.74), the square of the amplitude summed over the spin states of the

protons can be given in an explicitly covariant form. However, we prefer to evaluate

Eq. (9.75b) in the over-all c.m. system. Then, the amplitude takes the form, from

Eq. (9.46a),

My ~ (F ) i) & x(m) (9.75¢)

where w is the mass of the proton and E the proton energy, and

A~ By I(%][pl)

~pivpe t 5 o-(pxpg) - (9.75d)

Here we have used the expression (9.36). Let us note that, aside from the energy dependent
factor, the amplitude given in formula (9.75¢) is precisely the one we would have obtained,
had we started out with the non-relativistic formalism. The energy dependent factor is, of
course, the consequence of the fact that the protons are not at rest in the over-all c.m.

system.
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Let us calculate the distribution in the scattering angle cos 8 ~ Pi * Pg- By taking

the absolute square of the amplitude (9.75b) and performing the sum over the spin states,
we obtain

ZlmﬂF ~ tr{aA"}
~1+4+ 3cos’e, (9.76)

where we have suppressed the energy dependent factor.

The form of the amplitude (9.75) is such that it is invariant under parity transforma-
tions. The reader may verify this by writing down explicitly the expression for the spin-%
wave function [see Eq. (9.65)] and exhibiting its parity-transformation property [use the
formulae (8.30) and (9.59)]. Suppose now that the 4(1236) had spin-parity % . The modi-
fied scattering amplitude is, from formula (9.75b),

3
Mg, ~ avpd B pY vy (9.77a)
or, evaluating in the c.m. system,
1 t
Mgi ~ 2W(E + W) X'(mg) B X(my) » (9.77b)

where B is given by [see Eq. (9.36&)]

B=(g*p) Alg- p))
~ (g ps) pe- Q(%}(PJ
“(Ef'EJ[Q‘Bﬂ(Q‘EJ“fI%IH . (5.78)

Then, the distribution in the scattering angle is given by

Z |mes[* ~ e (BB}
~1+3cos’e , (9.79)

which is identical to the expression (9.76).

It is instructive to re-derive the angular distribution within the helicity formalism.
Our starting peint is the partial-wave expansion of the scattering amplitude given in
Eq. (5.10). Limiting the expansion to a term corresponding to J = %, we obtain for the
angular distribution

I(cos 6) ~ ) |F,Ex [T , (9.80)
'

where FA is the helicity decay amplitude of the J = % resonance. Owing to the parity con-

servation in the decay, we have

[E, [ = [F_f (9.81)
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regardless of the intrinsic parity of the resonance. Then, the angular distribution is
given by

t(cos o) ~ [a,(6) + [a}_(o) T
~1+ 3cos*e. (9.80a)

i) %Y >yt e T

We shall consider this decay in terms of the helicity states for the mucleon. The
decay amplitude may be written

m ~ gilp, pfulp 3m) , (9.82)

~

where A is the helicity of the nucleon and p;, is its momentum, and g is the invariant coup-
ling constant. If the decay amplitude is evaluated in the ?}+ rest frame, we obtain

E, + w 7?
g[ 1zw1 1} X'(A) p, - x(Gm) (9.83)

mn ~
where E, and w) are the energy and mass of the nucleon. Following exactly the same tech-
nique as that used for the integer-spin rescnances, we re-express the spin-% wave function
in terms of that with the quantization axis along the momentum p,. Indicating this wave
function by primes, we have

HEED) D) (4,6,0) XGw), (9.84)

where (9,9) are the spherical angles describing the direction of p,. Substituting the ex-
pression (9.13) for x' in Eq. (9.84), we can cast Eq. (9.83) in the following form:

3

Dix (680, (9.85)

where

i
(3) E,+w ]2
B~ gl =m—] pl1onr3) . (9.86)
The formula (9.85} is precisely that of the helicity formalism [see Eqs. (8.65) and (8.67)].
However, the tensor formalism gives further information, it gives the P-wave decay ampli-

tude a, in terms of the invariant coupling constant g.

It is clear that the non-relativistic tensor formalism would have given us the identi-
cal result, as far as the angular dependence is concerned. The reason is that the parity
conservation limits the decay amplitude to only one decay constant. Recall that we have
encountered the same situation in connection with the decay 2° + 17 + 07 discussed in the
previous section. The situation becomes more complex, if the resonance decay allows more
than one coupling constant, as we shall see in our next example.

iii) %~ > %"+ 0
The general amplitude for this decay process may be written, in the four-component

formalism,

m-~g, GH(BL’%)‘] UU(E’%m] + 2, ﬁu(Ep%)‘) Py 10 Uu(g,gm] ’ (9.87)
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where the subscript 1 corresponds to the %£+ particle, A is its helicity, and g, and g, are
the invariant coupling constants. Evaluating m in the %~ rest frame and using the rotated
wave functions as before, the amplitude can be cast into the form

3*
m~ B, 0 (5,0,0) , (9.88)
where
1
_| g + Wl:'E
Bt% N [ 2w, &
1
_1 E1+w,:’z[ 2E1] 2w,
B.1 *3g0|:—2w1 1+?1 +'3-g271p1 , (5.89)

and w is the mass of the 3% particle. Comparing this with the amplitude in the helicity
formalism [ see Eqs. (8.65) and (8.67)], one finds the cormection between the invariant
coupling constants and the partial-wave amplitudes a, and a; (corresponding to the S- and
D-waves, respectively):

Zwl

B < [m]; (a, + az)
S () an (g

If we wish to write down the amplitude in terms of the states corresponding to pure

(9.90)

orbital angular momentum, then we have to use the non-relativistic tensor formalism. The
situation here is similar to that of the decay 2° -~ 1~ + 0  discussed in the previous
section. The desired amplitude has the form

m o~ by X'EA) - X(Em) + b, XI(33) 1 p) x[Im] . (9.91)

1 ij

By re-expressing this into the form (9.88), it can be shown that a, may be set equal to by
and a; to -b, p2/3.

Let us suppose now that the 3E+ particle decays into a nucleon and a picn. Then, the
amplitude (9.91) should be multiplied by a factor [see formula (9.83)]

and summed over the intermediate helicity A (A’ is the nucleon helicity and k is the
nucleon momentum in the $§+ yest frame). The over-all amplitude may be written

m~x () g x(3m), (9.92)
where
¢, ~ b, T ]+ b, 1{ . (9.93)

The square of the amplitude summed over the initial and final spin states takes the form

3
Ym P ~ er{o; P[ﬁ] o1} (9.94)
where

0% of ~ by o8 1800 + o7 o 1) 1 (9.95)
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This example illustrates how the projection operators and the spin tensors enter into the
calculation of the square of amplitudes. Note that p, is evaluated in the 34 rest frame,
while k is given in the %" rest frame.

The formula (9.94) defines the angular distribution in cos 61 ~ k » p1. Within the
helicity formalism, the same angular distribution can be obtained by integrating over all
angles except cos 0 in Eq. (7.7):

teoso) ~ T, s fleb e + w1} (0.%)

where g

(%4)
A

N is given in terms of the partial-wave amplitudes al(ﬁ =0 or 2) by

o~ ; (22 + 1) a,a(zo%ﬂ%x]lz. (9.97)

It can be shown that the distribution given in formula (9.94) is indeed identical to the
expression (9.96).
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APPENDIX A
D-FUNCTIONS AND CLEBSCH-GORDAN COEFFICIENTS

) We list here some useful formulae involving the rotation matrices Dfn,m(a,s,y) and
dIJn ,m(ﬁ). In addition, we list a few relations involving the Clebsch-Gordan coefficients
which have been used in the text. The explicit d functions for j up to three are given in

Berman and Jacob'®).
For the rotation matrix, we use the definition as given in Rosez) , namely

(jm.]e—sz eﬂBJy e—lYlejm)

D85 Y)
— e—ima d,'zl'm[B) e—imY . (A.l)
By definition, the matrices Dfn, o are unitary and satisfy the group property:

Z Dmk Dmk ] = Smm' (A.Z)

m m Z D ka R) . (A.3)

The D-functions are normalized according to

8n®
J —
de D I UZ”‘Z[R] - 2J1+ 1 6j1j2 6I.111.12 61}11]]12 » (A'4)

where R = R{a,B,y) and dR = da d cos B dy.

The functions drj;l n have the following symmetry properties:

Al = (" danle) (A.5)
Bls) = (" daB) (A.6)
daln —8) = (V™ dag(8) (A7)
S G I Co L SR (A.8)

Owing to Eq. (A.6), the D-functions have the symmetry

Df:m[Q’B’Y] = [_)m'—m D{m!_m[ﬂ’BsY) . (A-g)
One may use the identity
R(r +a, 1—8 71— Y) = R(a&Y} R(0,m,0] (A.10)
to show that
D (r+a, -8, 1-7) = (P Dp_,(08sY) (A.11)
and
o), (n+ ¢ m-6,0) = ™ DJ._,(4,6,0) (A.12)

or taking ¢ ~ -¢ and using Eq. (A.9)

D), (=g m—8,0) = (-] D! . (66,0 (A.12a)
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the spherical harmonics Yrﬁ(e,li!) are related to the D-function via

Dru(,8:0) = / 25— Yi(owo) .

The D-functions satisfy the following coupling rule:

Diim, Diimy = 2 Gy 3| 3) Gy 3,m, | 5m,) D2,
Jakamy

Or, equivalently,
L 2j,+1
nh Ji Z 2
Jauamy
Using Eqs. (A.4) and (A.15), one obtains

8r?

-
J‘ dR Dulml DiZmz( ) Dﬂzma(R] = E_)a-Tl- [jﬂji j2U2|j3U3] [jlmlj2m2|j3m3) *

The following relations involving Clebsch-Gordan coefficients have been used in

i_h—+i'] [jlul jz”zljaua] [jlml jzmzljama D i

(A.13)

(A.14)

(A.15)

(A.16)

Section 7. These formulae can be derived by using the recursion relations for Clebsch-

Gordan coefficients [Edmondsa) p. 39). In terms of the shorthand notations

L=L(L+1)and J = J(J + 1)

one may write

(J-4L1]J2 ¥
(J;LO|IJ§]) TR (odd L 21)
(J310]33}
(Firoln) ~ 173 (even L]
b-dt2ldd)  a+;
(J‘%Ll].]—%] - \/f—z [eveanz]
(Jicoju1) T
Gotojo) ~ ' T 27 (even 1)
-12p1) [ © F feven 12 2
(JoLojgo) ~ [ T -2 enl=

o) (5 (F775)

(even L = 4)

(J-218]u2) [ iT-6 |
L

(JoLofJo)

(L1 }J2) T-2p T
(0-1sfaz) _[t—ﬁ] [3__3_]
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APPENDIX B

CROSS-SECTION AND PHASE SPACE

The purpose of this appendix is to show how one may define the cross-section and phase-
space formulae, once the normalizations for the single-particle states have been fixed as in
Eq. (2.20). Alsc listed here are a few explicit phase-space formulae, as they have been
used in the main text. All the formulae listed here are, of course, extremely well known;
we merely collect them here for ease of reference. The nommalizations of one-particle
states, as well as the conventions for cross-section and phase-space formulae, are the same
as those given in Pilkuhnll).

For simplicity of notation, we consider a reaction involving only spinless particles.
Let us denote a reaction producing n particles in the final state, i.e.

atb->1+2+..n. (B.1)

In the over-all c.m. system, let wy be the c.m. energy, P the initial relative momentum,
and Pi(Pf) the over-all four-momentum in the initial {(final) state. The differential cross-

section corresponding to reaction (B.1) may be written, in terms of the invariant amplitude

Mgy

1
do = 2= |mg[* dey(1,2,00n) (8.2)
where # is the flux factor, which in the over-all c.m. is given by
and d¢n is the n-body phase space:

0,12 e m) = (20)" (o = P} T] Ty (B.4)
k=1

apk is the invariant veolume element of the kth particle as given in Eq. {2.22).
The phase-space formula may be broken up into two factors as follows:

2

d
de, = déyfc,m + 1, wey ) [ Z:CJ Aon(1:25 eees m) (B.5)

where £ +m =n + 1 and c denotes a system consisting of particles 1 to m, its effective
mass being W.- After repeated application of Eq. (B.5) and using the explicit expression
for the two-body phase space,

1
dg,(1,2) = rymai {B.6)
where w is the effective mass of the particles 1 and 2, and P and 2 denote the magnitude

and direction of the relative momentum in the (1,2) rest frame, we may express the n-body
phase-space succinctly as follows:

1 [Z"JH Py =
d¢, = F-[Z_W]a—n. o df, kH=l {p dw dQ}k » (8.7}
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where the n-body phase space has been broken up into n - 1 arbitrary two-body subsystems,
each with effective mass W, relative momentum P> and direction Qk in the respective rest
frame (k =0, 1, 2, ..., n - 2). Note that for n = 2 Eq. (B.7) reduces to Eq. (B.6).

If n = 3, we obtain from Eq. (B.7),

1 1 p,

d¢,(1,2,3) = T @F dg, p dw da , (B.8)

where we have dropped the subscript 1 from p;, dwy, and d%,. This formula is then the
phase space appropriate for the reaction (5.25}. Equation (B.8) may be changed into a
different form by a simple change of variables:

4
d¢,(1,2,3) = —=5 dR dE, dE, , (8.9)

(av)?
where R stands for the Euler angles describing the orientation of the three-particle system,
and E;(E,) is the energy of the particle 1(2) in the over-all rest frame.

If n = 4, we see from Eq. (B.7) that

p
dg, ~ [w_z dﬂo] (p, dw dg) (p, dw, da) . (B.10)

This is the formula corresponding to the process (7.1) in the notation described in Secticn
7. Formula (B.10) may be recast into a different form using Eqgs. (B.8) and (B.9):

dg, ~ [E—: dQOJ (w dw) (dR dr, dE)) , (B.11)

which corresponds to the reaction (6.21).
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APPENDIX C
NORMALIZATION OF TWO-PARTICLE AND THREE-PARTICLE STATES

For simplicity of notation, we shall deal with spinless particles. Owing to
Eqs. (2.20), two-particle states are normalized:

o pslpip,y = 30 — ) Blp; ~ p) ©€.1)

where the invariant é-function is given in Eq. {2.21). A system consisting of two momenta
P and p, may be described, in general, by one four-momentum P representing the sum of the
four-moﬁenta of particies 1 and 2 and & describing the orientation of the relative momentum
in the (1,2) rest frame, i.e.

lp.2) = alp, p,) - (€.2)
We adopt the normalization for this state as follows:

(B, |pye) = (zn) P - p) da- q) . (€.3)

Let us multiply (C.1) and (C.2) by the invariant volume element ap1 apz [see Eq. (2.22)],
and integrate over these variables. Note that Eq. (C.1) gives 1, whereas Eq. (C.2} involves
an integration of the following form [see Eq. (B.4)]

2V _ 1
f@( ][ﬂ B Q) d¢2[1’2] - [4n]2 _z,_

after using the formula (B.6}. From Eq. (C.2}, we see immediately that

a = 4n \/FIJ_ . (c.4)

Next, we turn to a discussion of the three-particle states, normalized according to

3

(pi0;0; 10,050 = [ ¥ -0 - (€.5)

1=]
A system of three particles with momentum pi1, Pz, and p; may be specified by a four-
momentum P representing the sum of the three in&ividual~four—momenta, the Euler angles
R(a,B,Y) describing the orientation in the rest frame, and E; and E;, the energies of the
particles 1 and 2, evaluated in the rest frame. Let us write

|p,p,p,y = B[P Ry EpBy) (C.6)
with the normalization
(P,R,E,Ey|P,R, EuE,) = (2n)" 60 - P) (R - R) * &(E; - &) &(E; - E,) - .7

As with the two-particle system, we multiply Eqs. (C.5) and (C.7) by dp dp: dps and inte-
grate over these variables. Equation (C.5) gives 1, while for Eq. (C.7) one needs to evaluate

' ‘ t 4
I@h—@ﬁﬁgmmfguﬂmﬁ=“ﬁ.
where one has used Eq. (B.9). From Eq. (C.6), we see that the normalization constant b is
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